scholarly journals Mutational Analysis and Genotype-Phenotype Correlation of the PHEX Gene in X-Linked Hypophosphatemic Rickets

2001 ◽  
Vol 86 (8) ◽  
pp. 3889-3899 ◽  
Author(s):  
Ingrid A. Holm ◽  
Anne E. Nelson ◽  
Bruce G. Robinson ◽  
Rebecca S. Mason ◽  
Deborah J. Marsh ◽  
...  

PHEX is the gene defective in X-linked hypophosphatemic rickets. In this study, analysis of PHEX revealed mutations in 22 hypophosphatemic rickets patients, including 16 of 28 patients in whom all 22 PHEX exons were studied. In 13 patients, in whom no PHEX mutation had been previously detected in 17 exons, the remaining 5 PHEX exons were analyzed and mutations found in 6 patients. Twenty different mutations were identified, including 16 mutations predicted to truncate PHEX and 4 missense mutations. Phenotype analysis was performed on 31 hypophosphatemic rickets patients with PHEX mutations, including the 22 patients identified in this study, 9 patients previously identified, and affected family members. No correlation was found between the severity of disease and the type or location of the mutation. However, among patients with a family history of hypophosphatemic rickets, there was a trend toward more severe skeletal disease in patients with truncating mutations. Family members in more recent generations had a milder phenotype. Postpubertal males had a more severe dental phenotype. In conclusion, although identifying mutations in PHEX may have limited prognostic value, genetic testing may be useful for the early identification and treatment of affected individuals. Furthermore, this study suggests that other genes and environmental factors affect the severity of hypophosphatemic rickets.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Kelvin Tran ◽  
Michael Mortensen ◽  
Ghada Elshimy ◽  
Karyne Lima Vinales ◽  
Ricardo Rafael Correa

Abstract Introduction: X-linked Hypophosphatemic rickets (XLHR) is a rare form of rickets that mainly affects children but, in some cases, it can be missed and not diagnosed until later in life. We present a post-menopausal female that was misdiagnosed with osteoporosis for many years until complete work up was done, and she was found to have osteomalacia due to hypophosphatemia. Clinical case: A 59-year-old female was evaluated following admission to the hospital for a worsening femur fracture on imaging and had received ORIF. She was diagnosed with osteoporosis at the age of 45 and endorses a history of multiple femur fractures from low impact trauma. Despite previous bisphosphonate therapy, she continued to have recurrent fractures.[RC1] She reported no family history of early osteoporosis, but her mother was diagnosed with rickets as a child. Secondary workup for osteoporosis revealed normal 25OH vitamin D, SPEP, TSH, PTH and serum calcium, endomysial antibodies, and 24-hour urine calcium levels. However, the patient had persistently elevated alkaline phosphatase levels (150-200) and low phosphate levels (1.8-2.4). This raised the possibility of Paget’s disease, so a bone scan and lumbar X-ray were obtained which were normal. Given low phosphate levels, fibroblast growth factor (FGF)-23 was obtained and was elevated. This left the differential between tumor-induced osteomalacia (TIO) vs hypophosphatemic rickets. Ga-DOTATE scan and PET scan were negative, so the patient subsequently underwent genetic testing. She was found to have a phosphate regulating endopeptidase homologue (PHEX) gene mutation and was finally diagnosed with XLHR Her PHEX mutation was caused by a novel variant, c.1366 T>C or W456R, which has only been documented once in the literature. The patient was treated with 2 gm per day of phosphate supplementation in divided doses and calcitriol 0.25 mcg once daily which normalized her phosphate and 1,25 vitamin D levels. 1 month later after treatment, she reported significant improvements in bone pain, and her DEXA scans were stable for the following 4 years. Discussion: XLHR is a heterogeneous group of inherited disorders characterized by hypophosphatemia and impaired bone mineralization leading to rickets. It results from mutations affecting the PHEX gene of which more than 300 pathogenic variants have been described. The mutation causes excess FGF-23 which leads to osteomalacia and chronic hypophosphatemia. This condition can be difficult to distinguish from TIO as both present with low phosphate and elevated FGF-23 but can be differentiated with genetic testing. Recognition of the correct diagnosis is prudent to providing correct treatment. The current treatment for XLH is calcitriol and phosphorus replacement. Recently, burosumab was FDA approved in 2018 for treatment in adults.


2007 ◽  
Vol 22 (6) ◽  
pp. 981 ◽  
Author(s):  
Hae-Ryong Song ◽  
Joo-Won Park ◽  
Dae-Yeon Cho ◽  
Jae Hyuk Yang ◽  
Hye-Ran Yoon ◽  
...  

Author(s):  
Kok-Siong Poon ◽  
Karen Mei-Ling Tan ◽  
Margaret Zacharin ◽  
Cindy Wei-Li Ho

AbstractPathogenic variants in the PHEX gene are causative of X-linked hypophosphatemic rickets (XLH). We present a case of a 2-year-old girl with hypophosphatemic rickets with genu varum and short stature without any family history of XLH. Next generation sequencing of the PHEX gene identified a splice donor variant, NM_000444.6:c.1173 + 5G > A in intron 10. This variant had a mosaic pattern with only 22% of the sequence reads showing the variant allele and was not present in the girl's parents, both of whom had a normal phenotype. This is a sporadic case of a de novo mosaic splice-site variant in the PHEX gene.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2498-2498
Author(s):  
Shreerang Sirdesai ◽  
Kerryn Weekes ◽  
Asif Alam ◽  
Huyen A Tran ◽  
Christopher Barnes ◽  
...  

Abstract Aim: Hemophilia A (HA) is caused by abnormalities in the Factor VIII gene. Certain abnormalities correlate with disease severity. Here, we report the genotype-phenotype correlation for all Victorian HA patients. Methods: Using the Australian Bleeding Disorders Registry, Victorian HA patients were identified. All genetic testing was conducted at Southern Health. The testing algorithm is summarized in Figure 1. Mutations were compared with the list of known Factor 8 mutations on the Champ and EAHAD F8 Variant Databases. A PubMed search was undertaken for any mutations not on either database. If this too was unrevealing, the mutation was designated novel. In-silico analysis was conducted on all novel mutations using three open-access, online prediction tools: a) Mutation Taster; b) Poly-Phen 2; c) Human Splice Site Predictor. Results: 318 patients with matched clinical and genetic records were identified. 275 had known FVIII mutations and 36 novel FVIII mutations were discovered. Eight patients (3%) had no mutations identified. (Table 1) In severe HA the intron-22 inversion was the most common mutation (47/122, 38%). Missense mutations predominated in mild and moderate HA. Inhibitors were present in 44/318 patients, the majority of whom had 26/44 (59%) severe HA. 20/36 novel mutations (55%) were associated with severe HA, 12/36 (33%) with mild HA and 4/36 (11%) with a moderate HA. Novel mutations associated with non-severe phenotypes were mostly missense mutations (15/16); More diversity was seen in the novel mutations causing a severe HA with a fairly even distribution of mutations: missense (7/20), nonsense (4/20) and small deletions and insertions (8/20). One large deletion involving a 6.5kb region of exon 26, as well as one duplication of exons 7 to 9 - was seen in the severe group. In-silico analysis predicted that all novel severe HA mutations were likely to be pathogenic.Inhibitors were seen in 7 patients with novel mutations. Of the 36 novel mutations we described, 9/36 (25%) were seen in other family members - often female carriers. All 9 mutations caused a severe phenotype which is not unexpected given that the screening and testing of family members would be unlikely to take place in patients who have a mild phenotype and rarely require supportive medical care Conclusion: This study adds 36 novel mutations to the currently known FVIII haemophilic mutations. It also confirms that the frequency and correlative clinical severity of known genetic mutations in the Victorian HA cohort is similar to that described internationally. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 07 (02) ◽  
pp. 047-059 ◽  
Author(s):  
Binata Marik ◽  
Arvind Bagga ◽  
Aditi Sinha ◽  
Pankaj Hari ◽  
Arundhati Sharma

AbstractRefractory rickets is a genetic disorder that cannot be treated by vitamin D supplementation and adequate dietary calcium and phosphorus. Hereditary hypophosphatemic rickets is one of the major forms of refractory rickets in Indian children and caused due to mutations in the PHEX, FGF23, DMP1, ENPP1, and SLC34A3 genes. This is the first study in India on a large number of patients reporting on mutational screening of the PHEX gene. Direct sequencing in 37 patients with refractory rickets revealed eight mutations in 13 patients of which 1 was nonsense, 2 were deletions, 1 was a deletion–insertion, and 4 were missense mutations. Of these mutations, four (c.566_567 delAG, c.651_654delACAT, c.1337delinsAATAA, and c.2048T > A) were novel mutations. This article discusses the mutations in Indian patients, collates information on the genetic causes of refractory rickets, and emphasizes the significance of genetic testing for precise diagnosis, timely treatment, and management of the condition, especially in developing countries.


Author(s):  
Patrícia Maio ◽  
Lia Mano ◽  
Sara Rocha ◽  
Rute Baeta Baptista ◽  
Telma Francisco ◽  
...  

Abstract Phosphopenic rickets may be caused by mutations in the PHEX gene (phosphate regulating endopeptidase homolog X-linked). Presently, more than 500 mutations in the PHEX gene have been found to cause hypophosphatemic rickets. The authors report a clinical case of a 4-year-old girl with unremarkable family history, who presented with failure to thrive and bowing of the legs. Laboratory tests showed hypophosphatemia, elevated alkaline phosphatase, normal calcium, mildly elevated PTH and normal levels of 25(OH)D and 1.25(OH)D. The radiological study showed bone deformities of the radius and femur. Clinical diagnosis of phosphopenic rickets was made and the genetic study detected a heterozygous likely pathogenic variant of the PHEX gene: c.767_768del (p.Thr256Serfs*7). This variant was not previously described in the literature or databases. Knowledge about new mutations can improve patient’s outcome. Genetic analysis can help to establish a genotype-phenotype correlation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3594-3594
Author(s):  
Zane Chiad ◽  
Amanda Lance ◽  
Sara L. Seegers ◽  
Sarah-Catherine Paschall ◽  
Kendra Drummond ◽  
...  

Abstract Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) characterized by peripheral blood leukocytosis consisting primarily of segmented neutrophils and band forms, hypercellular bone marrow with granulocytosis, hepatosplenomegaly, and the presence of activating colony-stimulating factor 3 receptor (CSF3R) mutations. Blast transformation occurs frequently in patients with acquired CNL, with a median overall survival of 21 months from diagnosis. Typically, CSF3R mutations in CNL are thought to be somatic; however, we and others have reported rare cases of germline activating CSF3R mutations producing a familial CNL. Here we report the clinical course of a patient with CNL along with definitive evidence of inherited germline transmission of the CSF3R T618I mutation. Spanning four generations, with affected family members of ages 1.6 - 51 years, this is the largest reported pedigree of a family with familial CNL (Figure 1A). The proband is a 49-year-old female referred to our center with a history of lifelong leukocytosis and leukocyte count of 115.1 x 10 9/L with 75% granulocytes and 11% bands, platelet count of 341 x 10 9/L, and hemoglobin of 12.5 g/dL with hematocrit of 38%. The family history was also remarkable for leukocytosis. Prior therapies for the proband included imatinib, splenectomy, and hydroxyurea. Additional testing by our center revealed a T618I CSFR3 mutation, and the absence of mutations in ASXL1 and SETBP1 or a BCR-ABL translocation. Treatment with ruxolitinib resulted in improvement of her leukocyte count to 43.0 x 10 9/L with 73% granulocytes, and reduction in her alkaline phosphatase from 732 IU/L to 296 IU/L. There has been no evidence of gain of any known deleterious somatic mutations that frequently co-occur with somatic T618I CSF3R mutations in CNL in the patient to date. Germline analysis of genomic DNA extracted from cultured mesenchymal stromal cells from the proband and Sanger sequencing demonstrated a heterozygous T618I mutation. Mutational analysis of the proband's family members confirmed a heterozygous CSF3R T618I mutation in all living affected family members, while all unaffected family members tested were homozygous wild type. There has been no evidence of leukemic transformation in any affected family members to date. Mutational analysis was not feasible on the proband's deceased mother and brother with a putative CNL diagnosis due to lack of DNA samples; however, there was no evidence of transformation to acute leukemia in either of the two deceased family members. Because CSF3R can produce anti-apoptotic signaling, we hypothesized that autoactivating T618I mutations could prolong neutrophil survival. Polymorphonuclear cells (PMNs) isolated from the proband and from normal donors were cultured in vitro and apoptosis assessed at 24-hour intervals. Neutrophils expressing the CSF3R T618I had prolonged survival with a >40% decrease in apoptosis after 48 hours in culture (Figure 1B). RNA-seq followed by pathway analysis demonstrated significant decreases in activation of canonical apoptotic pathways in PMNs, including both the extrinsic and mitochondrial dependent pathways. Immunoblotting for candidate anti- and pro-apoptotic proteins revealed increased expression of the anti-apoptotic BCL2 family member MCL1 in T618I-expressing PMNs. Notably, inhibition of MCL1 using S63845 reversed the anti-apoptotic effect induced by ligand-activation of the CSF3R receptor in PMNs (P < 0.001, Figure 1C). In conclusion, we demonstrate hereditary CNL within a large family tree with no observed transformation to acute leukemia in any affected individuals up to age 51, suggesting a potentially more indolent course. Nonetheless, our observations highlight the need for germline testing of patients with CNL to better understand the natural history of CNL. Moreover, our data provide further insight into the pathobiology of CNL and potential novel targets for therapy. Figure 1 Figure 1. Disclosures Voorhees: Bristol-Myers Squibb Company.: Other: Data Safety & Monitoring; AbbVie Inc, Bristol-Myers Squibb Company; Consulting Agreement: GlaxoSmithKline, Novartis, Oncopeptides: Other: Advisory Committee.


2002 ◽  
Vol 283 (2) ◽  
pp. F356-F363 ◽  
Author(s):  
Eric R. Hines ◽  
James F. Collins ◽  
Marci D. Jones ◽  
Samantha H. Serey ◽  
Fayez K. Ghishan

The phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) is a member of the neutral endopeptidase family, which is expressed predominantly on the plasma membranes of mature osteoblasts and osteocytes. Although it is known that the loss of PHEX function results in X-linked hypophosphatemic rickets, characterized by abnormal bone matrix mineralization and renal phosphate wasting, little is known about how PHEX is regulated. We therefore sought to determine whether the murine PHEX gene is regulated by glucocorticoids (GCs), which are known to influence phosphate homeostasis and bone metabolism. Northern blot analysis revealed increased PHEX mRNA expression in GC-treated suckling mice (1.5-fold) and in rat osteogenic sarcoma (UMR-106) cells (2.5-fold). An increase was also seen in PHEX promoter activity in transiently transfected UMR-106 cells with GC treatment. Analysis of nested promoter deletions revealed that an atypical GC response element was located between −337 and −315 bp. Mutational analysis and electrophoretic mobility shift assays further identified −326 to −321 bp as a site involved in GC regulation. Supershift analyses and electrophoretic mobility shift assay competition studies indicated that the core binding factor α1-subunit transcription factor is able to bind to this region and may therefore play a role in the GC response of the murine PHEX gene.


Sign in / Sign up

Export Citation Format

Share Document