Mutational Analysis of the PHEX Gene: Novel Point Mutations and Detection of Large Deletions by MLPA in Patients with X-Linked Hypophosphatemic Rickets

2009 ◽  
Vol 85 (3) ◽  
pp. 211-220 ◽  
Author(s):  
S. Clausmeyer ◽  
V. Hesse ◽  
P. C. Clemens ◽  
M. Engelbach ◽  
M. Kreuzer ◽  
...  
2001 ◽  
Vol 86 (8) ◽  
pp. 3889-3899 ◽  
Author(s):  
Ingrid A. Holm ◽  
Anne E. Nelson ◽  
Bruce G. Robinson ◽  
Rebecca S. Mason ◽  
Deborah J. Marsh ◽  
...  

PHEX is the gene defective in X-linked hypophosphatemic rickets. In this study, analysis of PHEX revealed mutations in 22 hypophosphatemic rickets patients, including 16 of 28 patients in whom all 22 PHEX exons were studied. In 13 patients, in whom no PHEX mutation had been previously detected in 17 exons, the remaining 5 PHEX exons were analyzed and mutations found in 6 patients. Twenty different mutations were identified, including 16 mutations predicted to truncate PHEX and 4 missense mutations. Phenotype analysis was performed on 31 hypophosphatemic rickets patients with PHEX mutations, including the 22 patients identified in this study, 9 patients previously identified, and affected family members. No correlation was found between the severity of disease and the type or location of the mutation. However, among patients with a family history of hypophosphatemic rickets, there was a trend toward more severe skeletal disease in patients with truncating mutations. Family members in more recent generations had a milder phenotype. Postpubertal males had a more severe dental phenotype. In conclusion, although identifying mutations in PHEX may have limited prognostic value, genetic testing may be useful for the early identification and treatment of affected individuals. Furthermore, this study suggests that other genes and environmental factors affect the severity of hypophosphatemic rickets.


2002 ◽  
Vol 283 (2) ◽  
pp. F356-F363 ◽  
Author(s):  
Eric R. Hines ◽  
James F. Collins ◽  
Marci D. Jones ◽  
Samantha H. Serey ◽  
Fayez K. Ghishan

The phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) is a member of the neutral endopeptidase family, which is expressed predominantly on the plasma membranes of mature osteoblasts and osteocytes. Although it is known that the loss of PHEX function results in X-linked hypophosphatemic rickets, characterized by abnormal bone matrix mineralization and renal phosphate wasting, little is known about how PHEX is regulated. We therefore sought to determine whether the murine PHEX gene is regulated by glucocorticoids (GCs), which are known to influence phosphate homeostasis and bone metabolism. Northern blot analysis revealed increased PHEX mRNA expression in GC-treated suckling mice (1.5-fold) and in rat osteogenic sarcoma (UMR-106) cells (2.5-fold). An increase was also seen in PHEX promoter activity in transiently transfected UMR-106 cells with GC treatment. Analysis of nested promoter deletions revealed that an atypical GC response element was located between −337 and −315 bp. Mutational analysis and electrophoretic mobility shift assays further identified −326 to −321 bp as a site involved in GC regulation. Supershift analyses and electrophoretic mobility shift assay competition studies indicated that the core binding factor α1-subunit transcription factor is able to bind to this region and may therefore play a role in the GC response of the murine PHEX gene.


Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 249-265
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

ABSTRACT The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.


2006 ◽  
Vol 26 (10) ◽  
pp. 3824-3834 ◽  
Author(s):  
Huamin Zhou ◽  
Min Zheng ◽  
Jianming Chen ◽  
Changchuan Xie ◽  
Anand R. Kolatkar ◽  
...  

ABSTRACT Previous studies have revealed that transforming growth factor-β-activated protein kinase 1 (TAB1) interacts with p38α and induces p38α autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38α that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38α. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the φB+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38α is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38β (which does not bind to TAB1) revealed a previously unidentified locus of p38α comprising Thr218 and Ile275 that is essential for specific binding of p38α to TAB1. Converting either of these residues to the corresponding amino acid of p38β abolishes p38α interaction with TAB1. These p38α mutants still can be fully activated by p38α upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38α substrates and activators. This suggests that TAB1-induced autophosphorylation of p38α results from conformational changes that are similar but unique to those seen in p38α interactions with its substrates and activating kinases.


2002 ◽  
Vol 195 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Hitoshi Nagaoka ◽  
Masamichi Muramatsu ◽  
Namiko Yamamura ◽  
Kazuo Kinoshita ◽  
Tasuku Honjo

Somatic hypermutation (SHM) and class switch recombination (CSR) cause distinct genetic alterations at different regions of immunoglobulin genes in B lymphocytes: point mutations in variable regions and large deletions in S regions, respectively. Yet both depend on activation-induced deaminase (AID), the function of which in the two reactions has been an enigma. Here we report that B cell stimulation which induces CSR but not SHM, leads to AID-dependent accumulation of SHM-like point mutations in the switch μ region, uncoupled with CSR. These findings strongly suggest that AID itself or a single molecule generated by RNA editing function of AID may mediate a common step of SHM and CSR, which is likely to be involved in DNA cleavage.


2002 ◽  
Vol 160 (5) ◽  
pp. 1857-1865 ◽  
Author(s):  
Valdemar Máximo ◽  
Paula Soares ◽  
Jorge Lima ◽  
José Cameselle-Teijeiro ◽  
Manuel Sobrinho-Simões

2014 ◽  
Vol 142 (1-2) ◽  
pp. 75-78 ◽  
Author(s):  
Vladimir Radlovic ◽  
Zeljko Smoljanic ◽  
Nedeljko Radlovic ◽  
Zoran Lekovic ◽  
Dragana Ristic ◽  
...  

Introduction. X-linked hypophosphatemic rickets (XLHR) is a dominant inherited disease caused by isolated renal phosphate wasting and impairment of vitamin D activation. We present a girl with X-linked hypophosphatemic rickets (XLHR) as a consequence of de novo mutation in the PHEX gene. Case Outline. A 2.2-year-old girl presented with prominent lower limb rachitic deformity, waddling gait and disproportionate short stature (79 cm, <P5; -1,85 SD). On the basis of hypophosphatemia, hyperphosphaturia, high serum level of alkaline phosphatase, normal calcemia, 25(OH)D and PTH, as well as characteristic clinical and X-ray findings, diagnosis of hypophosphatemic rickets (HR) was made. Normal calciuria and absence of other renal tubular disorders indicated HR as a consequence of isolated hyperphosphaturia. The treatment (phosphate 55 mg/kg and calcitriol 35 ng/kg per day), introduced 15 month ago, resulted in a stable normalization of alkaline phosphatase and phosphorus serum levels (with intact calcemia and calciuria), disappearance of X-ray signs of the active rickets and improvement of the child?s longitudinal growth (0.6 cm per month). Subsequently, by detection of already known mutation in the PHEX gene: c.1735G>A (p.G579R) (exon 17), XLHR was diagnosed. Analysis of the parental PHEX gene did not show the abnormality, which indicated that the child?s XLHR was caused by de novo mutation of this gene. Conclusion. Identification of genetic defects is exceptionally significant for diagnosis and differential diagnosis of hereditary HR.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Hairul Aini Hamzah ◽  
Rahmatullah Sirat ◽  
Mohammed Imad A. Mustafa Mahmud ◽  
Roesnita Baharudin

 Introduction: Co-resistance to quinolones among extended spectrum β[1]lactamase (ESBL)-producing E. coli commonly occurs in clinical settings. Quinolones act on DNA gyrase and DNA topoisomerase enzymes, which are coded by gyrA and parC genes, thus any mutation to the genes may affect the drug effectiveness. The objective of the study was to characterize gyrA and parC genes in quinolone-resistant E. coli isolates and correlated the mutations with their phenotypic resistance. Materials and Methods: Thirty-two quinolone-resistant (QR) and six quinolone-sensitive (QS) ESBL-E. coli isolates were identified by antibiotic susceptibility and minimum inhibitory concentration tests. Bioinformatics analysis were conducted to study any mutations occurred in the genes and generate their codon compositions. Results: All the QR ESBL-E. coli isolates were identified as multidrug-resistant bacteria. A single point mutation in the quinolone resistance-determining region (QRDR) of gyrA, at codon 83, caused the substitution amino acid Ser83Leu. It is associated with a high level of resistance to nalidixic acid. However, double mutations Ser83Leu and Asp87Asn in the same region were significantly linked to higher levels of resistance to ciprofloxacin. Cumulative point mutations in gyrA and/or in parC were also correlated significantly (p<0.05) to increased resistance to ciprofloxacin. Conclusion: Together, the findings showed that the mutations in gyrA and parC genes handled the institution of intrinsic quinolone resistance in the ESBL-E. coli isolates. Thus, vigilant monitoring for emergence of new mutation in resistance genes may give an insight into dissemination of QR ESBL-E. coli in a particular region.


Sign in / Sign up

Export Citation Format

Share Document