scholarly journals Dissociation of Steroid Receptor Coactivator 1 and Nuclear Receptor Corepressor Recruitment to the Human Glucocorticoid Receptor by Modification of the Ligand-Receptor Interface: The Role of Tyrosine 735

2003 ◽  
Vol 17 (5) ◽  
pp. 845-859 ◽  
Author(s):  
Adam Stevens ◽  
Helen Garside ◽  
Andrew Berry ◽  
Charlotte Waters ◽  
Anne White ◽  
...  
Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 725-732 ◽  
Author(s):  
S. van der Laan ◽  
S. B. Lachize ◽  
E. Vreugdenhil ◽  
E. R. de Kloet ◽  
O. C. Meijer

Nuclear receptor coregulators are proteins that modulate the transcriptional activity of steroid receptors and may explain cell-specific effects of glucocorticoid receptor action. Based on the uneven distribution of a number of coregulators in CRH-expressing cells in the hypothalamus of the rat brain, we tested the hypothesis that these proteins are involved as mediators in the glucocorticoid-induced repression of the CRH promoter. Therefore, we assessed the role of coregulator proteins on both induction and repression of CRH in the AtT-20 cell line, a model system for CRH repression by glucocorticoids. The steroid receptor coactivator 1a (SRC1a), SRC-1e, nuclear corepressor (N-CoR), and silencing mediator of the retinoid and thyroid hormone receptor (SMRT) were studied in this system. We show that the concentration of glucocorticoid receptor and the type of ligand, i.e. corticosterone or dexamethasone, determines the repression. Furthermore, overexpression of SRC1a, but not SRC1e, increased both efficacy and potency of the glucocorticoid receptor-mediated repression of the forskolin-induced CRH promoter. Unexpectedly, cotransfection of the corepressors N-CoR and SMRT did not affect the corticosterone-dependent repression but resulted in a marked decrease of the forskolin stimulation of the CRH gene. Altogether, our data demonstrate that 1) the concentration of the receptor, 2) the type of ligand, and 3) the coregulator recruited all determine the expression and the repression of the CRH gene. We conclude that modulation of coregulator activity may play a role in the control of the hypothalamus-pituitary-adrenal axis.


2002 ◽  
Vol 16 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Qiao Li ◽  
Anna Su ◽  
Jihong Chen ◽  
Yvonne A. Lefebvre ◽  
Robert J. G. Haché

Abstract The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.


1998 ◽  
Vol 12 (4) ◽  
pp. 513-524 ◽  
Author(s):  
Xun Zhang ◽  
M. Jeyakumar ◽  
Sergei Petukhov ◽  
Milan K. Bagchi

Abstract Synthetic steroid hormone antagonists are clinically important compounds that regulate physiological responses to steroid hormones. The antagonists bind to the hormone receptors, which are ligand-inducible transcription factors, and modulate their gene-regulatory activities. In most instances, a steroid receptor, such as progesterone receptor (PR) or estrogen receptor (ER), is transcriptionally inactive when complexed with an antagonist and competitively inhibits transactivation of a target steroid-responsive gene by the cognate hormone-occupied receptor. In certain cellular and promoter contexts, however, antagonist-occupied PR or ER acquires paradoxical agonist-like activity. The cellular mechanisms that determine the switch from the negative to the positive mode of transcriptional regulation by an antagonist-bound steroid receptor are unknown. We now provide strong evidence supporting the existence of a cellular inhibitory cofactor that interacts with the B form of human PR (PR-B) complexed with the antiprogestin RU486 to maintain it in a transcriptionally inactive state. In the presence of unliganded thyroid hormone receptor (TR) or ER complexed with the antiestrogen 4-hydroxytamoxifen, which presumably sequesters a limiting pool of the inhibitory cofactor, RU486-PR-B functions as a transcriptional activator of a progesterone-responsive gene even in the absence of hormone agonist. In contrast, hormone-occupied TR or ER fails to induce transactivation by RU486-PR-B. Recent studies revealed that a transcriptional corepressor, NCoR (nuclear receptor corepressor), interacts with unliganded TR but not with liganded TR. Interestingly, coexpression of NCoR efficiently suppresses the partial agonistic activity of antagonist-occupied PR-B but fails to affect transactivation by agonist-bound PR-B. We further demonstrate that RU486-PR-B interacts physically with NCoR in vitro. These novel observations suggest that the inhibitory cofactor that associates with RU486-PR-B and represses its transcriptional activity is either identical or structurally related to the corepressor NCoR. We propose that cellular mechanisms that determine the switch from the antagonistic to the agonistic activity of RU486-PR-B involve removal of the corepressor from the antagonist-bound receptor so that it can effect partial but significant gene activation.


Sign in / Sign up

Export Citation Format

Share Document