scholarly journals Outcome heterogeneity and bias in acute experimental spinal cord injury

Neurology ◽  
2019 ◽  
Vol 93 (1) ◽  
pp. e40-e51 ◽  
Author(s):  
Ralf Watzlawick ◽  
Ana Antonic ◽  
Emily S. Sena ◽  
Marcel A. Kopp ◽  
Julian Rind ◽  
...  

ObjectiveTo determine whether and to what degree bias and underestimated variability undermine the predictive value of preclinical research for clinical translation.MethodsWe investigated experimental spinal cord injury (SCI) studies for outcome heterogeneity and the impact of bias. Data from 549 preclinical SCI studies including 9,535 animals were analyzed with meta-regression to assess the effect of various study characteristics and the quality of neurologic recovery.ResultsOverall, the included interventions reported a neurobehavioral outcome improvement of 26.3% (95% confidence interval 24.3–28.4). Response to treatment was dependent on experimental modeling paradigms (neurobehavioral score, site of injury, and animal species). Applying multiple outcome measures was consistently associated with smaller effect sizes compared with studies applying only 1 outcome measure. More than half of the studies (51.2%) did not report blinded assessment, constituting a likely source of evaluation bias, with an overstated effect size of 7.2%. Assessment of publication bias, which extrapolates to identify likely missing data, suggested that between 2% and 41% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested an overestimation of efficacy, reducing the effect sizes by between 0.9% and 14.3%.ConclusionsWe provide empirical evidence of prevalent bias in the design and reporting of experimental SCI studies, resulting in overestimation of the effectiveness. Bias compromises the internal validity and jeopardizes the successful translation of SCI therapies from the bench to bedside.

1991 ◽  
Vol 4 (4) ◽  
pp. 420-427 ◽  
Author(s):  
Richard K. Simpson ◽  
David S. Baskin ◽  
AIden W. Dudley ◽  
Linda Bogue ◽  
Florence Rothenberg

2020 ◽  
Vol 140 ◽  
pp. e185-e194
Author(s):  
Yihang Ma ◽  
Yuhang Zhu ◽  
Boyin Zhang ◽  
Yuntao Wu ◽  
Xiangji Liu ◽  
...  

Inflammation ◽  
2021 ◽  
Author(s):  
Shangrila Parvin ◽  
Clintoria R. Williams ◽  
Simone A. Jarrett ◽  
Sandra M. Garraway

Abstract— Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.


Sign in / Sign up

Export Citation Format

Share Document