scholarly journals A Fock space model for decomposition numbers for quantum groups at roots of unity

2019 ◽  
Vol 59 (4) ◽  
pp. 955-991
Author(s):  
Martina Lanini ◽  
Arun Ram ◽  
Paul Sobaje
1993 ◽  
Vol 07 (20n21) ◽  
pp. 3547-3550
Author(s):  
BENJAMIN ENRIQUEZ

The coordinate algebras of quantum groups at pα-th roots of unity are finite modules over their centers, at least in a suitable completed sense (cf. [E]). We describe their centers in the completed case, and deduce from this the centers of the non-completed algebras. As in the [dCKP] situation, it is generated by its “Poisson” and “Frobenius” parts.


2020 ◽  
Vol 14 (2) ◽  
pp. 667-680
Author(s):  
Ulrich Krähmer ◽  
Manuel Martins

2006 ◽  
Vol 15 (10) ◽  
pp. 1245-1277 ◽  
Author(s):  
STEPHEN F. SAWIN

We develop the basic representation theory of all quantum groups at all roots of unity (that is, for q any root of unity, where q is defined as in [18]), including Harish–Chandra's theorem, which allows us to show that an appropriate quotient of a subcategory gives a semisimple ribbon category. This work generalizes previous work on the foundations of representation theory of quantum groups at roots of unity which applied only to quantizations of the simplest groups, or to certain fractional levels, or only to the projective form of the group. The second half of this paper applies the representation theory to give a sequence of results crucial to applications in topology. In particular, for each compact, simple, simply-connected Lie group we show that at each integer level the quotient category is in fact modular (thus leading to a Topological Quantum Field Theory), we determine when at fractional levels the corresponding category is modular, and we give a quantum version of the Racah formula for the decomposition of the tensor product.


2017 ◽  
Vol 5 ◽  
Author(s):  
BEN WEBSTER

We prove a conjecture of Rouquier relating the decomposition numbers in category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space. Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic models for this category ${\mathcal{O}}$; while inspired by geometry, these are purely diagrammatic algebras, which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the representations of the Hecke algebra that are hit by projectives under the $\mathsf{KZ}$-functor from the Cherednik category ${\mathcal{O}}$ in this case, with an explicit basis. This algebra has a number of beautiful structures including categorifications of many aspects of Fock space. It can be understood quite explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic formalism to category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra, including the connection of decomposition numbers to canonical bases mentioned above, and an action of the affine braid group by derived equivalences between different blocks.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Nicolas Jacon

We use the crystal isomorphisms of the Fock space to describe two maps on partitions and multipartitions which naturally appear in the crystal basis theory for quantum groups in affine type $A$ and in the representation theory of Hecke algebras of type $G(l,l,n)$. 


Author(s):  
Thomas Creutzig ◽  
Matthew Rupert

We construct families of commutative (super) algebra objects in the category of weight modules for the unrolled restricted quantum group [Formula: see text] of a simple Lie algebra [Formula: see text] at roots of unity, and study their categories of local modules. We determine their simple modules and derive conditions for these categories being finite, non-degenerate, and ribbon. Motivated by numerous examples in the [Formula: see text] case, we expect some of these categories to compare nicely to categories of modules for vertex operator algebras. We focus in particular on examples expected to correspond to the higher rank triplet vertex algebra [Formula: see text] of Feigin and Tipunin and the [Formula: see text] algebras.


Sign in / Sign up

Export Citation Format

Share Document