Triceps Motor Nerve Branches as a Donor or Receiver in Nerve Transfers

2007 ◽  
Vol 61 (suppl_5) ◽  
pp. ONS333-ONS339 ◽  
Author(s):  
Jayme A. Bertelli ◽  
Marcos A. Santos ◽  
Paulo R. Kechele ◽  
Marcos F. Ghizoni ◽  
Hamilton Duarte

AbstractObjective:The pattern of triceps innervation is complex and, as yet, has not been fully elucidated. The purposes of this study were 1) to clarify the anatomy of the triceps motor branches, and 2) to evaluate their possible uses as a donor or receiver for nerve transfer.Methods:The radial nerve and its motor and cutaneous branches were bilaterally dissected from the axilla and posterior arm regions of 10 embalmed cadavers.Results:A single branch innervates the triceps long head, whereas double innervation was identified for the lateral and medial heads. The upper branch to the lateral head originated from the radial nerve, whereas the lower branch to the lateral head stemmed from the lower medial head motor branch, which ultimately innervated the anconeus muscle. Both the long head and the upper medial head motor branches originated in the axillary region in the vicinity of the latissimus dorsi tendon.Conclusion:Each of the triceps’ motor branches might be used as a donor for transfer. The triceps long head motor branch should be used preferentially when the intention is to establish triceps reinnervation.

2007 ◽  
Vol 107 (2) ◽  
pp. 370-377 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Paulo Roberto Kechele ◽  
Marcos Antonio Santos ◽  
Hamilton Duarte ◽  
Marcos Flávio Ghizoni

Object Grafting or nerve transfers to the axillary nerve have been performed using a deltopectoral approach and/or a posterior arm approach. In this report, the surgical anatomy of the axillary nerve was studied with the goal of repairing the nerve through an axillary access. Methods The axillary nerve was bilaterally dissected in 10 embalmed cadavers to study its variations. Three patients with axillary nerve injuries then underwent surgical repair through an axillary access; the axillary nerve was repaired by transfer of the triceps long head motor branch. Results At the lateral margin of the subscapularis muscle, the axillary nerve was found in the center of a triangle bounded medially by the subscapular artery, laterally by the latissimus dorsi tendon, and cephalad by the posterior circumflex humeral artery. At the entrance of the quadrangular space, the axillary nerve divisions were loosely connected to each other, and could be clearly separated and correctly identified. Surgery for the axillary nerve repair through the axillary access was straightforward. Eighteen months after surgery, all three patients had recovered deltoid strength to a score of M4 on the Medical Research Council scale and had improved abduction strength by 50%. No deficit was evident in elbow extension. Conclusions The axillary nerve and its branches can be safely dissected and repaired by triceps motor nerve transfer through an axillary access.


2021 ◽  
pp. 1-10
Author(s):  
Jayme A. Bertelli ◽  
Mayur Sureshlal Goklani ◽  
Neehar Patel ◽  
Elisa Cristiana Winkelmann Duarte

OBJECTIVE The authors sought to describe the anatomy of the radial nerve and its branches when exposed through an axillary anterior arm approach. METHODS Bilateral upper limbs of 10 fresh cadavers were dissected after dyed latex was injected into the axillary artery. RESULTS Via the anterior arm approach, all triceps muscle heads could be dissected and individualized. The radial nerve overlaid the latissimus dorsi tendon, bounded by the axillar artery on its superior surface, then passed around the humerus, together with the lower lateral arm and posterior antebrachial cutaneous nerve, between the lateral and medial heads of the triceps. No triceps motor branch accompanied the radial nerve’s trajectory. Over the latissimus dorsi tendon, an antero-inferior bundle, containing all radial nerve branches to the triceps, was consistently observed. In the majority of the dissections, a single branch to the long head and dual innervations for the lateral and medial heads were observed. The triceps long and proximal lateral head branches entered the triceps muscle close to the latissimus dorsi tendon. The second branch to the lateral head stemmed from the triceps lower head motor branch. The triceps medial head was innervated by the upper medial head motor branch, which followed the ulnar nerve to enter the medial head on its anterior surface. The distal branch to the triceps medial head also originated near the distal border of the latissimus dorsi tendon. After a short trajectory, a branch went out that penetrated the medial head on its posterior surface. The triceps lower medial head motor branch ended in the anconeus muscle, after traveling inside the triceps medial head. The lower lateral arm and posterior antebrachial cutaneous nerve followed the radial nerve within the torsion canal. The lower lateral brachial cutaneous nerve innervated the skin over the biceps, while the posterior antebrachial cutaneous nerve innervated the skin over the lateral epicondyle and posterior surface of the forearm. The average numbers of myelinated fibers were 926 in the long and 439 in the upper lateral head and 658 in the upper and 1137 in the lower medial head motor branches. CONCLUSIONS The new understanding of radial nerve anatomy delineated in this study should aid surgeons during reconstructive surgery to treat upper-limb paralysis.


Hand ◽  
2020 ◽  
pp. 155894472092848
Author(s):  
Graham J. McLeod ◽  
Blair R. Peters ◽  
Tanis Quaife ◽  
Tod A. Clark ◽  
Jennifer L. Giuffre

Background: Transfer of the anterior interosseous nerve (AIN) into the ulnar motor branch improves intrinsic hand function in patients with high ulnar nerve injuries. We report our outcomes of this nerve transfer and hypothesize that any improvement in intrinsic hand function is beneficial to patients. Methods: A retrospective review of all AIN-to-ulnar motor nerve transfers, including both supercharged end-to-side (SETS) and end-to-end (ETE) transfers, from 2011 to 2018 performed by 2 surgeons was conducted. All adult patients who underwent this nerve transfer for any reason with greater than 6 months’ follow-up and completed charts were included. Primary outcome measures were motor function using the British Medical Research Council (BMRC) grading system and subjective satisfaction with surgery using a visual analog scale. Secondary outcome measures included complications and donor site deficits. Results: Of the 57 patients who underwent nerve transfer, 32 patients met the inclusion criteria. The average follow-up and average time to surgery were 12 and 15.6 months, respectively. The overall average BMRC score was 2.9/5, with a trend toward better recovery in patients who received earlier surgery (<12 months = BMRC 3.7, ≥12 months = BMRC 2.2; P < .01). Patients with an SETS transfer had better results that those with an ETE transfer (SETS = 3.2, ETE = 2.6). There were no donor deficits after operation. One patient developed complex regional pain syndrome. Conclusions: Patients with earlier surgery and an in-continuity nerve (receiving an SETS transfer) showed improved recovery with a higher BMRC grade compared with those who underwent later surgery. Any improvements in intrinsic hand function would be beneficial to patients.


2018 ◽  
Vol 10 (03) ◽  
pp. 139-142 ◽  
Author(s):  
Prashant Chaware ◽  
John Santoshi ◽  
Manmohan Patel ◽  
Mohtashim Ahmad ◽  
Bertha Rathinam

AbstractThe innervation pattern of triceps is complex and not fully comprehended. Anomalous innervations of triceps have been described by various authors. We have attempted to delineate the nerve supply of the triceps and documented the anomalous innervations of its different heads. The brachial plexus and its major branches (in the region of the axilla and arm) and triceps were dissected in 36 embalmed cadaver upper limbs. Long head received one branch from radial nerve in 31 (86%) specimens. Four (11%) specimens received two branches including one that had dual innervation from the radial and axillary nerves, and one (3%) specimen had exclusive innervation from a branch of the axillary nerve. Medial head received two branches arising from the radial nerve in 34 (94%) specimens. One (3%) specimen received three branches from the radial nerve whereas one (3%) had dual supply from the radial and ulnar nerves. Lateral head received multiple branches exclusively from the radial nerve, ranging from 2 to 5, in all (100%) specimens. Knowledge of the variations in innervation of the triceps would not only help the surgeon to avoid inadvertent injury to any of the nerve branches but also offers new options for nerve and free functional muscle transfers.


Hand ◽  
2021 ◽  
pp. 155894472098812
Author(s):  
J. Megan M. Patterson ◽  
Stephanie A. Russo ◽  
Madi El-Haj ◽  
Christine B. Novak ◽  
Susan E. Mackinnon

Background: Radial nerve injuries cause profound disability, and a variety of reconstruction options exist. This study aimed to compare outcomes of tendon transfers versus nerve transfers for the management of isolated radial nerve injuries. Methods: A retrospective chart review of 30 patients with isolated radial nerve injuries treated with tendon transfers and 16 patients managed with nerve transfers was performed. Fifteen of the 16 patients treated with nerve transfer had concomitant pronator teres to extensor carpi radialis brevis tendon transfer for wrist extension. Preoperative and postoperative strength data, Disabilities of the Arm, Shoulder, and Hand (DASH) scores, and quality-of-life (QOL) scores were compared before and after surgery and compared between groups. Results: For the nerve transfer group, patients were significantly younger, time from injury to surgery was significantly shorter, and follow-up time was significantly longer. Both groups demonstrated significant improvements in grip and pinch strength after surgery. Postoperative grip strength was significantly higher in the nerve transfer group. Postoperative pinch strength did not differ between groups. Similarly, both groups showed an improvement in DASH and QOL scores after surgery with no significant differences between the 2 groups. Conclusions: The nerve transfer group demonstrated greater grip strength, but both groups had improved pain, function, and satisfaction postoperatively. Patients who present early and can tolerate longer time to functional recovery would be optimal candidates for nerve transfers. Both tendon transfers and nerve transfers are good options for patients with radial nerve palsy.


Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


2019 ◽  
Vol 24 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Ellen L. Larson ◽  
Katherine B. Santosa ◽  
Susan E. Mackinnon ◽  
Alison K. Snyder-Warwick

This case report describes an isolated radial nerve avulsion in a pediatric patient, treated by combination sensory and motor median to radial nerve transfers. After traumatic avulsion of the proximal radial nerve, a 12-year-old male patient underwent end-to-end transfer of median nerve branches to flexor carpi radialis and flexor digitorum superficialis to the posterior interosseous nerve and extensor carpi radialis nerve, respectively. He underwent end-to-side sensory transfer of the superficial radial sensory to the median sensory nerve. Pronator teres to extensor carpi radialis brevis tendon transfer was simultaneously performed to power short-term wrist extension. Within months after surgery, the patient had regained 9–10/10 sensation in the hand and forearm. In the following months and years, he regained dexterity, independent fine-finger and thumb motions, and 4–5/5 strength in all extensors except the abductor pollicis longus muscle. He grew 25 cm without extremity deformity or need for secondary orthopedic procedures. In appropriate adult and pediatric patients with proximal radial nerve injuries, nerve transfers have advantages over tendon transfers, including restored independent fine finger motions, regained sensation, and reinnervation of multiple muscle groups with minimal donor sacrifice.


1970 ◽  
Vol 6 (1) ◽  
pp. 834-839
Author(s):  
DLR Silva ◽  
MP Barros ◽  
TGS Freire ◽  
L Firmino Júnior ◽  
WRB Almeida Filho ◽  
...  

The ulnar nerve is considered the thickest terminal branch of the medial cord in the brachial plexus and most authors does not mention the possibility of this nerve emitting branches to the arm. However, some studies reported that the ulnar nerve could supply the medial head of triceps brachii muscle. The main objective in this study was identifying the presence of ulnar nerve branches in triceps brachii muscle. Sixty upper limbs of adult Brazilian corpses of both sexes were used. The estimated age was between 25 and 80 years old. Every studied piece had the nerves and their branches quantified and measured with a manual mechanic caliper. The branches were photographed and had the data registered in individual files. Were found ulnar nerve branches for all the heads of triceps brachii muscle: 1 branch (9,1%) to lateral head, 2 branches (18,1%) to long head and 8 branches (72,7%) to medial head. Thus, we can conclude that the contribution of ulnar nerve to triceps brachii muscle constitutes an important anatomical variation.Key words: Ulnar nerve; Triceps brachii muscle; Innervation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Matthias Luft ◽  
Johanna Klepetko ◽  
Silvia Muceli ◽  
Jaime Ibáñez ◽  
Vlad Tereshenko ◽  
...  

Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available for multiple nerve transfers to a common target muscle in the upper extremity. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers. For this purpose, we developed a forelimb model to enable tension-free transfer of one or two donor nerves in the upper extremity. Anatomic dissections were performed to design the double nerve transfer model (n=8). In 62 male Sprague-Dawley rats the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps’ long head was transected at the motor entry point and resected up to its original branch to prevent auto-reinnervation. In all animals, coaptation of both nerves to the motor entry point could be performed tension-free. Mean duration of the procedure was 49 ± 13 min for the single nerve transfer and 78 ± 20 min for the double nerve transfer. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle.


2020 ◽  
Vol 19 (2) ◽  
pp. E131-E139 ◽  
Author(s):  
Thibault Lafosse ◽  
Thibault Gerosa ◽  
Julien Serane ◽  
Michael Bouyer ◽  
Emmanuel H Masmejean ◽  
...  

Abstract BACKGROUND Restoration of shoulder external rotation remains challenging in patients with C5/C6 brachial plexus injuries (BPI). OBJECTIVE To describe a double-nerve transfer to the axillary nerve (AN), targeting both its anterior and posterior motor branches, through an axillary route. METHODS A total of 10 fresh-frozen cadaveric brachial plexuses were dissected. Using an axillary approach, the infraclavicular brachial plexus terminal branches were exposed, including the axillary, ulnar, and radial nerves. Under microscopic magnification, the triceps long head motor branch (TLHMB), anteromedial fascicles of the ulnar nerve (UF), the anterior motor branch of the axillary nerve (AAMB), and the teres minor motor branch (TMMB) were dissected and transected to simulate 2 nerve transfers, THLMB-AAMB and UF-TMMB. Several anatomical criteria were assessed, including the overlaps between fascicles when placed side-by-side. Six patients with C5/C6 BPI were then operated on using this technique. RESULTS TLHMB-AAMB and UF-TMMB transfers could be simulated in all specimens, with mean overlaps of 37.1 mm and 6.5 mm, respectively. After a mean follow-up of 23 mo, all patients had recovered grade-3 strength or more in the deltoid and teres minor muscles. Mean active shoulder flexion, abduction, and external rotation with the arm 90° abducted were of 128°, 117°, and 51°, respectively. No postoperative motor deficit was found in the UF territory. CONCLUSION A double-nerve transfer, based on radial and ulnar fascicles, appears to be an adequate option to reanimate both motor branches of the AN, providing satisfactory shoulder active elevations and external rotation in C5/C6 BPI patients.


Sign in / Sign up

Export Citation Format

Share Document