Multitract Orthogonal Microelectrode Localization of the Subthalamic Nucleus: Description of a Novel Technique

2014 ◽  
Vol 10 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Jennifer A. Sweet ◽  
Benjamin L. Walter ◽  
Charles Munyon ◽  
Jonathan P. Miller

Abstract BACKGROUND: Microelectrode recording helps surgeons accurately localize boundaries of the subthalamic nucleus (STN) and surrounding structures in deep brain stimulation. OBJECTIVE: To describe a novel adaptation of the Ben gun device to optimize efficient mapping. METHODS: Patients who underwent STN deep brain stimulation over a 3-year period were reviewed. For the final year, the Ben gun was rotated 45° and the target was offset 1.4 mm lateral and anterior in the plane orthogonal to the intended trajectory to allow for simultaneous parallel tracks at target, 2.8 mm anterior (localizing the front of STN), and 2.8 mm lateral (identifying the internal capsule). Before this step, the initial pass consisted of 1 to 2 tracks with the frame center targeted to STN. The primary outcome measure was the number of passes required for accurate localization of the nucleus and boundaries. RESULTS: Eighty-three electrodes were implanted in 45 patients (mean age, 62; range, 37-78 years), of which 29 electrodes were placed by the use of the new technique. One electrode (4%) required more than 1 pass using the new technique compared with 36 (67%) using the older technique (P < .01). The distance from original target to final electrode position increased from 0.67 ± 0.13 mm to 1.06 ± 0.15 mm (P < .05) with a greater tendency to move the final electrode position posteriorly. There was no statistically significant difference in benefit from neurostimulation. CONCLUSION: This technique facilitates reliable localization of the STN with fewer passes, possibly decreasing the risks associated with more passes and longer duration of surgery.

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Chunhui Yang ◽  
Yiqing Qiu ◽  
Xi Wu ◽  
Jiali Wang ◽  
Yina Wu ◽  
...  

Objectives. To analyze the hyperhidrosis neural network structure induced by subthalamic nucleus (STN) - deep brain stimulation (DBS). Materials and Methods. Patients with Parkinson’s disease treated with STN-DBS in Changhai Hospital between July 1, 2015, and December 1, 2016, were analyzed retrospectively. Using records of side effects of the intraoperative macrostimulation test, patients with skin sweats were selected as the sweating group. Based on the number of cases in the sweating group, the same number of patients was randomly selected from other STN-DBS patients without sweating to form the control group. The study standardized electrode position with Lead-DBS software to Montreal Neurological Institute (MNI) standard stereotactic space to compare the differences in three-dimensional coordinates of activated contacts between groups. Results. Of 355 patients, 11 patients had sweats during intraoperative macrostimulation tests. There was no significant difference in the preoperative baseline information and the postoperative UPDRS-III improvement rate (Med-off, IPG-on) between groups. Contacts inducing sweat were more medial (X-axis) (11.02 ± 0.69 mm vs 11.98 ± 0.84 mm, P=0.00057) and more upward (Z-axis) (−7.15 ± 1.06 mm VS −7.98 ± 1.21 mm, P=0.032) than those of the control group. The straight-line distance between the center of the sweat contact and the nearest voxel of the red nucleus was closer than that of the control group (2.72 ± 0.65 mm VS 3.76 ± 0.85 mm, P=0.00012). Conclusions. STN-DBS-induced sweat indicated that the contact was at superior medial of STN.


2016 ◽  
Vol 124 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Zhiqiang Cui ◽  
Longsheng Pan ◽  
Huifang Song ◽  
Xin Xu ◽  
Bainan Xu ◽  
...  

OBJECT The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes. METHODS Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes. RESULTS Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients. CONCLUSIONS The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.


2020 ◽  
Vol 9 (6) ◽  
pp. 1946 ◽  
Author(s):  
Gloria Villalba Martínez ◽  
Azucena Justicia ◽  
Purificación Salgado ◽  
José María Ginés ◽  
Rocío Guardiola ◽  
...  

Background: The main objective of this study was to assess the safety and efficacy of deep brain stimulation (DBS) in patients with severe anorexia nervosa (AN). Methods: Eight participants received active DBS to the subcallosal cingulate (SCC) or nucleus accumbens (NAcc) depending on comorbidities (affective or anxiety disorders, respectively) and type of AN. The primary outcome measure was body mass index (BMI). Results: Overall, we found no significant difference (p = 0.84) between mean preoperative and postoperative (month 6) BMI. A BMI reference value (BMI-RV) was calculated. In patients that received preoperative inpatient care to raise the BMI, the BMI-RV was defined as the mean BMI value in the 12 months prior to surgery. In patients that did not require inpatient care, the BMI-RV was defined as the mean BMI in the 3-month period before surgery. This value was compared to the postoperative BMI (month 6), revealing a significant increase (p = 0.02). After 6 months of DBS, five participants showed an increase of ≥10% in the BMI-RV. Quality of life was improved (p = 0.03). Three cases presented cutaneous complications. Conclusion: DBS may be effective for some patients with severe AN. Cutaneous complications were observed. Longer term data are needed.


1996 ◽  
Vol 85 (6) ◽  
pp. 1181-1183 ◽  
Author(s):  
Jacques Favre ◽  
Jamal M. Taha ◽  
Timothy Steel ◽  
Kim J. Burchiel

✓ The authors report a new technique to anchor deep brain stimulation electrodes using a titanium microplate. This technique has been safely used to secure 20 quadripolar deep brain stimulation electrodes implanted for movement disorders (18 electrodes) and pain (two electrodes). Twelve electrodes were implanted in the thalamus, four in the subthalamic nucleus, and four in the pallidum. No electrode migration or rupture occurred, and all electrodes have been shown to work properly after internalization of the system.


2019 ◽  
Vol 17 (5) ◽  
pp. 497-502 ◽  
Author(s):  
Peter C Reinacher ◽  
Bálint Várkuti ◽  
Marie T Krüger ◽  
Tobias Piroth ◽  
Karl Egger ◽  
...  

Abstract BACKGROUND Automatic segmentation is gaining relevancy in image-based targeting of neural structures. OBJECTIVE To evaluate its feasibility, we retrospectively analyzed the concordance of magnetic resonance imaging (MRI)-based automatic segmentation of the subthalamic nucleus (STN) and intraoperative microelectrode recordings (MERs). METHODS Electrodes (n = 60) for deep brain stimulation were implanted in the STN of patients (n = 30; median age 57 yr) with Parkinson disease (n = 29) or rapid-onset dystonia parkinsonism (n = 1). Elements (Brainlab, Munich, Germany) were used to segment the STN, using 2 volumetric T1 (±contrast) and volumetric T2 images as input. The stereotactic computed tomography was coregistered with the imaging, and the original stereotactic coordinates were imported. MERs (0.5-1 mm steps) along the anterior, central, and lateral trajectories were used to determine differences between the image-segmented STN boundary and MER-based STN entry and exit. RESULTS Of 175 trajectories, 105 penetrated or touched (≤0.7 mm) the STN. The overall median deviation between the segmented STN boundary and electrophysiological recordings was 1.1 mm for MER-based STN entry and 2.0 mm for STN exit. Regarding the entry point of the STN, there was no statistically significant difference between MRI-based automatic segmentation and the electrophysiological trajectories analyzed with intraoperative MER. The exit point was significantly different between both methods in the central and lateral trajectories. CONCLUSION MRI-based automatic segmentation of the STN is a viable, patient-specific targeting approach that can be used alongside traditional targeting methods in deep brain stimulation to support preoperative planning and visualization of target structures and aid postoperative optimization of programming.


2008 ◽  
Vol 51 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Toshiaki Taoka ◽  
Hidehiro Hirabayashi ◽  
Hiroyuki Nakagawa ◽  
Masahiko Sakamoto ◽  
Satoru Kitano ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Christopher P. Hurt ◽  
Daniel J. Kuhman ◽  
Barton L. Guthrie ◽  
Carla R. Lima ◽  
Melissa Wade ◽  
...  

Introduction: Although deep brain stimulation (DBS) often improves levodopa-responsive gait symptoms, robust therapies for gait dysfunction from Parkinson's disease (PD) remain a major unmet need. Walking speed could represent a simple, integrated tool to assess DBS efficacy but is often not examined systematically or quantitatively during DBS programming. Here we investigate the reliability and functional significance of changes in gait by directional DBS in the subthalamic nucleus.Methods: Nineteen patients underwent unilateral subthalamic nucleus DBS surgery with an eight-contact directional lead (1-3-3-1 configuration) in the most severely affected hemisphere. They arrived off dopaminergic medications >12 h preoperatively and for device activation 1 month after surgery. We measured a comfortable walking speed using an instrumented walkway with DBS off and at each of 10 stimulation configurations (six directional contacts, two virtual rings, and two circular rings) at the midpoint of the therapeutic window. Repeated measures of ANOVA contrasted preoperative vs. maximum and minimum walking speeds across DBS configurations during device activation. Intraclass correlation coefficients examined walking speed reliability across the four trials within each DBS configuration. We also investigated whether changes in walking speed related to modification of step length vs. cadence with a one-sample t-test.Results: Mean comfortable walking speed improved significantly with DBS on vs. both DBS off and minimum speeds with DBS on (p < 0.001, respectively). Pairwise comparisons showed no significant difference between DBS off and minimum comfortable walking speed with DBS on (p = 1.000). Intraclass correlations were ≥0.949 within each condition. Changes in comfortable walk speed were conferred primarily by changes in step length (p < 0.004).Conclusion: Acute assessment of walking speed is a reliable, clinically meaningful measure of gait function during DBS activation. Directional and circular unilateral subthalamic DBS in appropriate configurations elicit acute and clinically significant improvements in gait dysfunction related to PD. Next-generation directional DBS technologies have significant potential to enhance gait by individually tailoring stimulation parameters to optimize efficacy.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Wang ◽  
Yongsheng Li ◽  
Xiaona Zhang ◽  
Anmu Xie

Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS) has proven effective in improving motor symptoms in Parkinson’s disease (PD) patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD), that is, Cohen’s d, with a 95% confidence interval (CI) was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P<0.001). STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus) and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.


2006 ◽  
Vol 96 (3) ◽  
pp. 1569-1580 ◽  
Author(s):  
Svjetlana Miocinovic ◽  
Martin Parent ◽  
Christopher R. Butson ◽  
Philip J. Hahn ◽  
Gary S. Russo ◽  
...  

The subthalamic nucleus (STN) is the most common target for the treatment of Parkinson’s disease (PD) with deep brain stimulation (DBS). DBS of the globus pallidus internus (GPi) is also effective in the treatment of PD. The output fibers of the GPi that form the lenticular fasciculus pass in close proximity to STN DBS electrodes. In turn, both STN projection neurons and GPi fibers of passage represent possible therapeutic targets of DBS in the STN region. We built a comprehensive computational model of STN DBS in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys. Only axonal activation of the STN neurons showed a statistically significant increase in both monkeys when comparing clinically effective and ineffective stimulation. Nonetheless, both neural targets may play important roles in the therapeutic mechanisms of STN DBS.


Sign in / Sign up

Export Citation Format

Share Document