Pallidal Deep Brain Stimulation for Primary Dystonia in Children

Neurosurgery ◽  
2011 ◽  
Vol 68 (3) ◽  
pp. 738-743 ◽  
Author(s):  
Abilash Haridas ◽  
Michele Tagliati ◽  
Irene Osborn ◽  
Ioannis Isaias ◽  
Yakov Gologorsky ◽  
...  

Abstract BACKGROUND: Deep brain stimulation (DBS) at the internal globus pallidus (GPi) has replaced ablative procedures for the treatment of primary generalized dystonia (PGD) because it is adjustable, reversible, and yields robust clinical improvement that appears to be long lasting. OBJECTIVE: To describe the long-term responses to pallidal DBS of a consecutive series of 22 pediatric patients with PGD. METHODS: Retrospective chart review of 22 consecutive PGD patients, ≤21 years of age treated by one DBS team over an 8-year period. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate symptom severity and functional disability, pre- and post-operatively. Adverse events and medication changes were also noted. RESULTS: The median follow-up was 2 years (range, 1-8 years). All 22 patients reached 1-year follow-up; 14 reached 2 years, and 11 reached 3 years. The BFMDRS motor subscores were improved 84%, 93%, and 94% (median) at these time points. These motor responses were matched by equivalent improvements in function, and the response to DBS resulted in significant reductions in oral and intrathecal medication requirements after 12 and 24 months of stimulation. There were no hemorrhages or neurological complications related to surgery and no adverse effects from stimulation. Significant hardware-related complications were noted, in particular, infection (14%), which delayed clinical improvement. CONCLUSION: Pallidal DBS is a safe and effective treatment for PGD in patients <21 years of age. The improvement appears durable. Improvement in device design should reduce hardware-related complications over time.

Author(s):  
Ailish Coblentz ◽  
Gavin J. B. Elias ◽  
Alexandre Boutet ◽  
Jurgen Germann ◽  
Musleh Algarni ◽  
...  

OBJECTIVEThe objective of this study was to report the authors’ experience with deep brain stimulation (DBS) of the internal globus pallidus (GPi) as a treatment for pediatric dystonia, and to elucidate substrates underlying clinical outcome using state-of-the-art neuroimaging techniques.METHODSA retrospective analysis was conducted in 11 pediatric patients (6 girls and 5 boys, mean age 12 ± 4 years) with medically refractory dystonia who underwent GPi-DBS implantation between June 2009 and September 2017. Using pre- and postoperative MRI, volumes of tissue activated were modeled and weighted by clinical outcome to identify brain regions associated with clinical outcome. Functional and structural networks associated with clinical benefits were also determined using large-scale normative data sets.RESULTSA total of 21 implanted leads were analyzed in 11 patients. The average follow-up duration was 19 ± 20 months (median 5 months). Using a 7-point clinical rating scale, 10 patients showed response to treatment, as defined by scores < 3. The mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale motor score was 40% ± 23%. The probabilistic map of efficacy showed that the voxel cluster most associated with clinical improvement was located at the posterior aspect of the GPi, comparatively posterior and superior to the coordinates of the classic GPi target. Strong functional and structural connectivity was evident between the probabilistic map and areas such as the precentral and postcentral gyri, parietooccipital cortex, and brainstem.CONCLUSIONSThis study reported on a series of pediatric patients with dystonia in whom GPi-DBS resulted in variable clinical benefit and described a clinically favorable stimulation site for this cohort, as well as its structural and functional connectivity. This information could be valuable for improving surgical planning, simplifying programming, and further informing disease pathophysiology.


2008 ◽  
Vol 109 (1) ◽  
pp. 130-132 ◽  
Author(s):  
Brigitte Biolsi ◽  
Laura Cif ◽  
Hassan El Fertit ◽  
Santiago Gil Robles ◽  
Philippe Coubes

Deep brain stimulation is now accepted as a safe and efficient treatment for movement disorders including selected types of dystonia and dyskinesia. Very little, however, is known about its effect on other movement disorders, particularly for “choreic” movements. Huntington disease is a fatal autosomal-dominant neurodegenerative disorder characterized by movement disorders, progressive cognitive impairment, and psychiatric symptoms. Bilateral chronic stimulation of the internal globus pallidus was performed to control choreic movements in a 60-year-old man with a 10-year history of Huntington disease. Chronic deep brain stimulation resulted in remarkable improvement of choreic movements. Postoperative improvement was sustained after 4 years of follow-up with a marked improvement in daily quality of life.


BMJ Open ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. e029652 ◽  
Author(s):  
Dan Piña-Fuentes ◽  
Martijn Beudel ◽  
Simon Little ◽  
Peter Brown ◽  
D L Marinus Oterdoom ◽  
...  

IntroductionAdaptive deep brain stimulation (aDBS), based on the detection of increased beta oscillations in the subthalamic nucleus (STN), has been assessed in patients with Parkinson’s disease (PD) during the immediate postoperative setting. In these studies, aDBS was shown to be at least as effective as conventional DBS (cDBS), while stimulation time and side effects were reduced. However, the effect of aDBS on motor symptoms and stimulation-induced side effects during the chronically implanted phase (after the stun effect of DBS placement has disappeared) has not yet been determined.Methods and analysisThis protocol describes a single-centre clinical study in which aDBS will be tested in 12 patients with PD undergoing battery replacement, with electrodes implanted in the STN, and as a proof of concept in the internal globus pallidus. Patients included will be allocated in a pseudo-randomised fashion to a three-condition (no stimulation/cDBS/ aDBS), cross-over design. A battery of tests will be conducted and recorded during each condition, which aim to measure the severity of motor symptoms and side effects. These tests include a tablet-based tapping test, a subscale of the Movement Disorder Society-unified Parkinson’s disease rating scale (subMDS-UPDRS), the Speech Intelligibility Test (SIT) and a tablet-based version of the Stroop test. SubMDS-UPDRS and SIT recordings will be blindly assessed by independent raters. Data will be analysed using a linear mixed-effects model.Ethics and disseminationThis protocol was approved by the Ethical Committee of the University Medical Centre Groningen, where the study will be carried out. Data management and compliance to research policies and standards of our centre, including data privacy, storage and veracity, will be controlled by an independent monitor. All the scientific findings derived from this protocol are aimed to be made public through publication of articles in international journals.Trial registration numberNTR 5456; Pre-results.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 957-963 ◽  
Author(s):  
Francesco Cacciola ◽  
Jibril Osman Farah ◽  
Paul R Eldridge ◽  
Patricia Byrne ◽  
Telekath K Varma

Abstract BACKGROUND: Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) was shown to be effective in cervical dystonia refractory to medical treatment in several small short-term and 1 long-term follow-up series. Optimal stimulation parameters and their repercussions on the cost/benefit ratio still need to be established. OBJECTIVE: To report our long-term outcome with bilateral GPi deep brain stimulation in cervical dystonia. METHODS: The Toronto Western Spasmodic Torticollis Rating Scale was evaluated in 10 consecutive patients preoperatively and at last follow-up. The relationship of improvement in postural severity and pain was analyzed and stimulation parameters noted and compared with those in a similar series in the literature. RESULTS: The mean (standard deviation) follow-up was 37.6 (16.9) months. Improvement in the total Toronto Western Spasmodic Torticollis Rating Scale score as evaluated at latest follow-up was 68.1% (95% confidence interval: 51.5-84.6). In 4 patients, there was dissociation between posture severity and pain improvement. Prevalently bipolar stimulation settings and high pulse widths and amplitudes led to excellent results at the expense of battery life. CONCLUSION: Improvement in all 3 subscale scores of the Toronto Western Spasmodic Torticollis Rating Scale with bilateral GPi deep brain stimulation seems to be the rule. Refinement of stimulation parameters might have a significant impact on the cost/benefit ratio of the treatment. The dissociation of improvement in posture severity and pain provides tangible evidence of the complex nature of cervical dystonia and offers interesting insight into the complex functional organization of the GPi.


2017 ◽  
Vol 43 (1) ◽  
pp. E2 ◽  
Author(s):  
Victor Goulenko ◽  
Paulo Luiz da Costa Cruz ◽  
Paulo Niemeyer Filho

Pallidal stimulation has been the usual surgical treatment for dystonia in the last decades. The continuous investigation of the physiopathology and the motor pathways involved leads to the search for complementary targets to improve results. The authors present the case of a 37-year-old woman who had suffered from idiopathic hemidystonia with hyperkinetic and hypokinetic movements for 11 years, and who was treated with deep brain stimulation. A brief literature review is also provided. The globus pallidus internus and the ventral intermediate/ventral oral posterior complex of the thalamus were stimulated separately and simultaneously for 3 months and compared using the Burke-Fahn-Marsden Dystonia Rating Scale and the Global Dystonia Severity Rating Scale, with a 3.5-year follow-up. The synergism of multiple-target stimulation resulted in a complete improvement of the mixed dystonic symptoms.


Neurology ◽  
2020 ◽  
Vol 94 (10) ◽  
pp. e1073-e1084 ◽  
Author(s):  
Takashi Tsuboi ◽  
Zakia Jabarkheel ◽  
Pamela R. Zeilman ◽  
Matthew J. Barabas ◽  
Kelly D. Foote ◽  
...  

ObjectiveTo assess longitudinal tremor outcomes with ventral intermediate nucleus deep brain stimulation (VIM DBS) in patients with dystonic tremor (DT) and to compare with DBS outcomes in essential tremor (ET).MethodsWe retrospectively investigated VIM DBS outcomes for 163 patients followed at our center diagnosed with either DT or ET. The Fahn-Tolosa-Marin tremor rating scale (TRS) was used to assess change in tremor and activities of daily living (ADL) at 6 months, 1 year, 2–3 years, 4–5 years, and ≥6 years after surgery.ResultsTwenty-six patients with DT and 97 patients with ET were analyzed. Compared to preoperative baseline, there were significant improvements in TRS motor up to 4–5 years (52.2%; p = 0.032) but this did not reach statistical significance at ≥6 years (46.0%, p = 0.063) in DT, which was comparable to the outcomes in ET. While the improvements in the upper extremity tremor, head tremor, and axial tremor were also comparable between DT and ET throughout the follow-up, the ADL improvements in DT were lost at 2–3 years follow-up.ConclusionOverall, tremor control with VIM DBS in DT and ET was comparable and remained sustained at long term likely related to intervention at the final common node in the pathologic tremor network. However, the long-term ADL improvements in DT were not sustained, possibly due to inadequate control of concomitant dystonia symptoms. These findings from a large cohort of DT indicate that VIM targeting is reasonable if the tremor is considerably more disabling than the dystonic features.Classification of evidenceThis study provides Class IV evidence that VIM DBS improves tremor in patients with DT or ET.


Neurosurgery ◽  
2011 ◽  
Vol 70 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Han-Joon Kim ◽  
Beom S. Jeon ◽  
Jee-Young Lee ◽  
Sun Ha Paek ◽  
Dong Gyu Kim

Abstract BACKGROUND Pain is a well-recognized feature of Parkinson disease (PD), which is primarily a motor disorder. In a previous study, we showed that subthalamic deep brain stimulation (STN DBS) improves pain as well as motor symptoms 3 months after surgery in PD patients. OBJECTIVE To determine whether there is a long-term beneficial effect of STN DBS on pain in PD. METHODS We studied 21 patients with PD who underwent STN DBS. Motor symptoms were assessed using the Unified Parkinson's Disease Rating Scale and Hoehn and Yahr staging. Pain was evaluated by asking patients about the quality and severity of pain in each body part. Evaluations were performed at baseline and at 3 and 24 months after surgery. RESULTS At baseline, 18 of the 21 patients (86%) experienced pain. After surgery, most of the pain reported at baseline had improved or disappeared at 3 months and improved further at 24 months. The benefit of STN DBS for pain evaluated at 24 months was comparable to that with medication at baseline. At 24 months, 9 patients (43%) reported new pain that was not present at baseline. Most of the new pain was musculoskeletal in quality. Despite the development of new pain, the mean pain score at follow-up was lower than at baseline. CONCLUSION STN DBS improves pain in PD, and this beneficial effect persists, being observed after a prolonged follow-up of 24 months. In addition, in many of the PD patients new, mainly musculoskeletal pain developed on longer follow-up.


Neurosurgery ◽  
2006 ◽  
Vol 59 (5) ◽  
pp. E1140-E1140 ◽  
Author(s):  
Francesco Vergani ◽  
Andrea Landi ◽  
Angelo Antonini ◽  
Erik P. Sganzerla

Abstract OBJECTIVE Subthalamic (Stn) deep brain stimulation (DBS) is a valid surgical therapy for the treatment of severe Parkinson's disease. In recent years, StnDBS has been proposed for patients who previously received other surgical treatments, such as thalamotomy and pallidotomy. Nonetheless, there is no consensus about the indications of DBS in patients who previously underwent surgery. To the best of our knowledge this is the first reported case of a patient treated with DBS after previous thalamotomy and adrenal grafting. CLINICAL PRESENTATION A 62-year-old man with a long history (more than 30 yr) of Parkinson's disease received unilateral thalamotomy and autologous adrenal graft on two independent occasions. Thalamotomy led to a significant improvement, although limited to the control of contralateral tremor. The autologous adrenal graft was of no benefit. For the subsequent occurrence of L-dopa related dyskinesias and severe “off” periods, the patient was referred to our center for StnDBS. INTERVENTION The patient underwent bilateral StnDBS, obtaining a satisfactory improvement of rigidity and bradykinesia on both sides. The 1-year follow-up evaluation showed a 46% improvement in the Unified Parkinson's Disease Rating Scale motor section, along with a noticeable reduction in antiparkinsonian therapy (81%). CONCLUSION This case is consistent with previous reports from the literature, suggesting that StnDBS is feasible and safe, even in patients who previously received other surgical treatments for Parkinson's disease, such as thalamotomy or cell grafting.


2019 ◽  
Vol 24 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Jetan H. Badhiwala ◽  
Brij Karmur ◽  
Lior M. Elkaim ◽  
Naif M. Alotaibi ◽  
Benjamin R. Morgan ◽  
...  

OBJECTIVEAlthough deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates.METHODSData were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately.RESULTSOf 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up.CONCLUSIONSIn a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.


2015 ◽  
Vol 38 (6) ◽  
pp. E5 ◽  
Author(s):  
Azam A. Qureshi ◽  
Jennifer J. Cheng ◽  
Abraham N. Sunshine ◽  
Adela Wu ◽  
Gregory M. Pontone ◽  
...  

OBJECT Cases of postoperative psychosis in Parkinson’s disease patients receiving deep brain stimulation (DBS) treatment have previously been published. However, the magnitude of symptom incidence and the clinical risk factors are currently unknown. This retrospective study sheds light on these issues by investigating psychosis in a group of 128 Parkinson’s disease patients who received DBS implants. METHODS A retrospective chart review was performed to obtain surgery dates, follow-up clinic visit dates, and associated stimulation parameter settings (contacts in use and the polarity of each along with stimulation voltage, frequency, and pulse width) for each patient. Unified Parkinson’s Disease Rating Scale II Thought Disorder scores, used as a clinical assessment tool to evaluate the presence of psychosis at each visit, were also collected. The data were compiled into a database and analyzed. RESULTS The lifetime incidence of psychosis in this cohort of patients was 28.1%. The data suggest that risk of psychosis remains fairly constant throughout the first 5 years after implantation of a DBS system and that patients older at the time of receiving the first DBS implant are not only more likely to develop psychosis, but also to develop symptoms sooner than their younger counterparts. Further analysis provides evidence that psychosis is largely independent of the clinically used electrode contact and of stimulation parameters prior to psychosis onset. CONCLUSIONS Although symptoms of psychosis are widely seen in patients with Parkinson’s disease in the years following stimulator placement, results of the present suggest that most psychoses occurring postoperatively are likely independent of implantation and stimulation settings.


Sign in / Sign up

Export Citation Format

Share Document