scholarly journals The equivalent martingale measure conditions in a general model for interest rates

2005 ◽  
Vol 37 (2) ◽  
pp. 415-434 ◽  
Author(s):  
Kais Hamza ◽  
Saul Jacka ◽  
Fima Klebaner

Assuming that the forward rates ftu are semimartingales, we give conditions on their components under which the discounted bond prices are martingales. To achieve this, we give sufficient conditions for the integrated processes ftu=∫0uftvdv to be semimartingales, and identify their various components. We recover the no-arbitrage conditions in models well known in the literature and, finally, we formulate a new random field model for interest rates and give its equivalent martingale measure (no-arbitrage) condition.

2005 ◽  
Vol 37 (02) ◽  
pp. 415-434 ◽  
Author(s):  
Kais Hamza ◽  
Saul Jacka ◽  
Fima Klebaner

Assuming that the forward rates f t u are semimartingales, we give conditions on their components under which the discounted bond prices are martingales. To achieve this, we give sufficient conditions for the integrated processes f t u =∫0 uf t v dv to be semimartingales, and identify their various components. We recover the no-arbitrage conditions in models well known in the literature and, finally, we formulate a new random field model for interest rates and give its equivalent martingale measure (no-arbitrage) condition.


Author(s):  
Tomas Björk

In this chapter we study a general one period model living on a finite sample space. The concepts of no arbitrage and completeness are introduced, as well as the concept of a martingale measure. We then prove the First Fundamental Theorem, stating that absence of arbitrage is equivalent to the existence of an equivalent martingale measure. We also prove the Second Fundamental Theorem which says that the market is complete if and only if the martingale measure is unique. Using this theory, we derive pricing and hedging formulas for financial derivatives.


2021 ◽  
Vol 9 (1) ◽  
pp. 439-459
Author(s):  
Antonis Papapantoleon ◽  
Paulo Yanez Sarmiento

Abstract We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multiple traded assets whose marginal risk-neutral distributions are known, and assume that several derivatives written on these assets are traded simultaneously. In this setting, there is a bijection between the existence of an equivalent martingale measure and the existence of a copula that couples these marginals. Using this bijection and recent results on improved Fréchet–Hoeffding bounds in the presence of additional information on functionals of a copula by [18], we can extend the results of [33] on the detection of arbitrage opportunities to the general multi-dimensional case. More specifically, we derive sufficient conditions for the absence of arbitrage and formulate an optimization problem for the detection of a possible arbitrage opportunity. This problem can be solved efficiently using numerical optimization routines. The most interesting practical outcome is the following: we can construct a financial market where each multi-asset derivative is traded within its own no-arbitrage interval, and yet when considered together an arbitrage opportunity may arise.


2003 ◽  
Vol 06 (06) ◽  
pp. 613-636 ◽  
Author(s):  
F. Thierbach

In this paper we analyze the mean-variance hedging approach in an incomplete market under the assumption of additional market information, which is represented by a given, finite set of observed prices of non-attainable contingent claims. Due to no-arbitrage arguments, our set of investment opportunities increases and the set of possible equivalent martingale measures shrinks. Therefore, we obtain a modified mean-variance hedging problem, which takes into account the observed additional market information. Solving this we obtain an explicit description of the optimal hedging strategy and an admissible, constrained variance-optimal signed martingale measure, that generates both the approximation price and the observed option prices.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Tak Kuen Siu

Should the regime-switching risk be priced? This is perhaps one of the important “normative” issues to be addressed in pricing contingent claims under a Markovian, regime-switching, Black-Scholes-Merton model. We address this issue using a minimal relative entropy approach. Firstly, we apply a martingale representation for a double martingale to characterize the canonical space of equivalent martingale measures which may be viewed as the largest space of equivalent martingale measures to incorporate both the diffusion risk and the regime-switching risk. Then we show that an optimal equivalent martingale measure over the canonical space selected by minimizing the relative entropy between an equivalent martingale measure and the real-world probability measure does not price the regime-switching risk. The optimal measure also justifies the use of the Esscher transform for option valuation in the regime-switching market.


2013 ◽  
Vol 380-384 ◽  
pp. 4537-4540
Author(s):  
Nan Liu ◽  
Mei Ling Wang ◽  
Xue Bin Lü

The multi-dimensional Esscher transform was used to find a locally equivalent martingale measure to price the options based on multi-asset. An integro-differential equation was driven for the prices of multi-asset options. The numerical method based on the Fourier transform was used to calculate some special multi-asset options in exponential Lévy models. As an example we give the calculation of extreme options.


Author(s):  
Mehdi Vazifedan ◽  
Qiji Jim Zhu

In a one price economy, the Fundamental Theorem of Asset Pricing (FTAP) establishes that no-arbitrage is equivalent to the existence of an equivalent martingale measure. Such an equivalent measure can be derived as the normal unit vector of the hyperplane that separates the attainable gain subspace and the convex cone representing arbitrage opportunities. However, in two-price financial models (where there is a bid-ask price spread), the set of attainable gains is not a subspace anymore. We use convex optimization, and the conic property of this region to characterize the “No-Arbitrage” principle in financial models with the bid-ask price spread present. This characterization will lead us to the generation of a set of price factor random variables. Under such a set, we can find the lower and upper bounds (supper-hedging and sub-hedging bounds) for the price of any future cash flow. We will show that for any given cash flow, for which the price is outside the above range, we can build a trading strategy that provides one with an arbitrage opportunity. We will generalize this structure to any two-price finite-period financial model.


Sign in / Sign up

Export Citation Format

Share Document