scholarly journals Integral gene drives for population replacement

Biology Open ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. bio037762 ◽  
Author(s):  
Alexander Nash ◽  
Giulia Mignini Urdaneta ◽  
Andrea K. Beaghton ◽  
Astrid Hoermann ◽  
Philippos Aris Papathanos ◽  
...  
2018 ◽  
Author(s):  
Alexander Nash ◽  
Giulia Mignini Urdaneta ◽  
Andrea K. Beaghton ◽  
Astrid Hoermann ◽  
Philippos Aris Papathanos ◽  
...  

AbstractFirst generation CRISPR-based gene drives have now been tested in the laboratory in a number of organisms including malaria vector mosquitoes. A number of challenges for their use in the area-wide genetic control of vector-borne disease have been identified. These include the development of target site resistance, their long-term efficacy in the field, their molecular complexity, and the practical and legal limitations for field testing of both gene drive and coupled anti-pathogen traits. To address these challenges, we have evaluated the concept of Integral Gene Drive (IGD) as an alternative paradigm for population replacement. IGDs incorporate a minimal set of molecular components, including both the drive and the anti-pathogen effector elements directly embedded within endogenous genes – an arrangement which we refer to as gene “hijacking”. This design would allow autonomous and non-autonomous IGD traits and strains to be generated, tested, optimized, regulated and imported independently. We performed quantitative modelling comparing IGDs with classical replacement drives and show that selection for the function of the hijacked host gene can significantly reduce the establishment of resistant alleles in the population while hedging drive over multiple genomic loci prolongs the duration of transmission blockage in the face of pre-existing target-site variation. IGD thus has the potential to yield more durable and flexible population replacement traits.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Astrid Hoermann ◽  
Sofia Tapanelli ◽  
Paolo Capriotti ◽  
Giuseppe Del Corsano ◽  
Ellen KG Masters ◽  
...  

Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.


2018 ◽  
Author(s):  
Sumit Dhole ◽  
Alun L. Lloyd ◽  
Fred Gould

ABSTRACTOptimism regarding potential epidemiological and conservation applications of modern gene drives is tempered by concern about the potential unintended spread of engineered organisms beyond the target population. In response, several novel gene drive approaches have been proposed that can, under certain conditions, locally alter characteristics of a population. One challenge for these gene drives is the difficulty of achieving high levels of localized population suppression without very large releases in face of gene flow. We present a new gene drive system, Tethered Homing (TH), with improved capacity for localized population alteration, especially for population suppression. The TH drive is based on driving a payload gene using a homing construct that is anchored to a spatially restricted gene drive. We use a proof of principle mathematical model to show the dynamics of a TH drive that uses engineered underdominance as an anchor. This system is composed of a split homing drive and a two-locus engineered underdominance drive linked to one part of the split drive (the Cas endonuclease). In addition to improved localization, the TH system offers the ability to gradually adjust the genetic load in a population after the initial alteration, with minimal additional release effort.


2020 ◽  
Author(s):  
Frederik J.H. de Haas ◽  
Sarah P. Otto

1AbstractEngineered gene drive techniques for population replacement and/or suppression have potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Unfortunately, the self-propelled behavior of drives can lead to the spread of transgenic elements beyond the target population, which is concerning. Gene drive systems with a low threshold frequency for invasion, such as homing-based gene drive systems, require initially few transgenic individuals to spread and are therefore easy to implement. However their ease of spread presents a double-edged sword; their low threshold makes these drives much more susceptible to spread outside of the target population (spillover). We model a proposed drive system that transitions in time from a low threshold drive system (homing-based gene drive) to a high threshold drive system (underdominance) using daisy chain technology. This combination leads to a spatially restricted drive strategy, while maintaining an attainable release threshold. We develop and analyze a discrete-time model as proof of concept and find that this technique effectively generates stable local population suppression, while preventing the spread of transgenic elements beyond the target population under biologically realistic parameters.


2019 ◽  
Vol 12 (8) ◽  
pp. 1688-1702 ◽  
Author(s):  
Sumit Dhole ◽  
Alun L. Lloyd ◽  
Fred Gould

Author(s):  
Anna Buchman ◽  
Isaiah Shriner ◽  
Ting Yang ◽  
Junru Liu ◽  
Igor Antoshechkin ◽  
...  

AbstractEngineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. To overcome this challenge, we engineered SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species) to generate postzygotic reproductive barriers. Using this approach, we engineer multiple reproductively isolated SPECIES and demonstrate their threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.One Sentence SummarySynthetically engineered SPECIES drive confinable population replacement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Buchman ◽  
Isaiah Shriner ◽  
Ting Yang ◽  
Junru Liu ◽  
Igor Antoshechkin ◽  
...  

AbstractEngineered reproductive species barriers are useful for impeding gene flow and driving desirable genes into wild populations in a reversible threshold-dependent manner. However, methods to generate synthetic barriers are lacking in advanced eukaryotes. Here, to overcome this challenge, we engineer SPECIES (Synthetic Postzygotic barriers Exploiting CRISPR-based Incompatibilities for Engineering Species), an engineered genetic incompatibility approach, to generate postzygotic reproductive barriers. Using this approach, we create multiple reproductively isolated SPECIES and demonstrate their reproductive isolation and threshold-dependent gene drive capabilities in D. melanogaster. Given the near-universal functionality of CRISPR tools, this approach should be portable to many species, including insect disease vectors in which confinable gene drives could be of great practical utility.


Author(s):  
Astrid Hoermann ◽  
Sofia Tapanelli ◽  
Paolo Capriotti ◽  
Ellen K. G. Masters ◽  
Tibebu Habtewold ◽  
...  

AbstractGene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns, that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an accepted testing pathway of gene drives for malaria eradication.


Nature ◽  
2017 ◽  
Vol 545 (7655) ◽  
pp. 388-388
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document