scholarly journals An in vivo translation-reporter system for the study of protein synthesis in zebrafish embryos

Biology Open ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. bio039362
Author(s):  
Inês Garcez Palha ◽  
Isabelle Anselme ◽  
Sylvie Schneider-Maunoury ◽  
François Giudicelli
2018 ◽  
Author(s):  
Inês Garcez Palha ◽  
Isabelle Anselme ◽  
Sylvie Schneider-Maunoury ◽  
François Giudicelli

ABSTRACTControl of gene expression at the translation level is increasingly regarded as a key feature in many biological processes. Simple, inexpensive, and reliable procedures to visualise sites of protein production are required to allow observation of the spatiotemporal patterns of mRNA translation at subcellular resolution. We present a method, named SPoT (for Subcellular Patterns of Translation), developed upon the original TimeStamp technique (Lin et al., 2008), consisting in the expression of a fluorescent protein fused to a tagged, self-cleavable protease domain. Addition of a cell-permeable protease inhibitor instantly stabilizes newly produced, tagged protein allowing to distinguish recently synthesized protein from more ancient one. After a brief protease inhibitor treatment, the ratio of tagged vs non-tagged forms is highest at sites where proteins are the most recent, i.e. sites of synthesis. Therefore, by comparing tagged and non-tagged protein it is possible to spotlight sites of translation. By specifically expressing the SPoT cassette in neurons of transgenic zebrafish embryos, we reveal sites of neuronal protein synthesis in diverse cellular compartments during early development.


1998 ◽  
Vol 18 (3) ◽  
pp. 1459-1466 ◽  
Author(s):  
Harold J. Drabkin ◽  
Melanie Estrella ◽  
Uttam L. Rajbhandary

ABSTRACT Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TΨC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TΨC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TΨC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.


2021 ◽  
Vol 22 (18) ◽  
pp. 9679
Author(s):  
Leonid V. Aseev ◽  
Ludmila S. Koledinskaya ◽  
Oksana S. Bychenko ◽  
Irina V. Boni

The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5′UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.


1994 ◽  
Vol 92 (4) ◽  
pp. 585-594 ◽  
Author(s):  
T. J. Bouma ◽  
R. De Visser ◽  
J. H. J. A. Janssen ◽  
M. J. De Kock ◽  
P H. Van Leeuwen ◽  
...  

2001 ◽  
Vol 2 (3) ◽  
pp. 188-195 ◽  
Author(s):  
Tara C Brutzki ◽  
Myron J Kulczycky ◽  
Leslie Bardossy ◽  
Bryan J Clarke ◽  
Morris A Blajchman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Genetics ◽  
1979 ◽  
Vol 91 (2) ◽  
pp. 215-227
Author(s):  
W Scott Champney

ABSTRACT Two variations of the method of localized mutagenesis were used to introduce mutations into the 72 min region of the Escherichia coli chromosome. Twenty temperature-sensitive mutants, with linkage to markers in this region, have been examined. Each strain showed an inhibition of growth in liquid medium at 44°, and 19 of the mutants lost viability upon prolonged incubation at this temperature. A reduction in the rate of in vivo RNA and protein synthesis was observed for each mutant at 44°, relative to a control strain. Eleven of the mutants were altered in growth sensitivity or resistance to one or more of three ribosomal antibiotics. The incomplete assembly of ribosomal subunits was detected in nine strains grown at 44°. The characteristics of these mutants suggest that many of them are altered in genes for translational or transcriptional components, consistent with the clustering of these genes at this chromosomal locus.


Sign in / Sign up

Export Citation Format

Share Document