scholarly journals Vps54 regulates Drosophila neuromuscular junction development and interacts genetically with Rab7 to control composition of the postsynaptic density

Biology Open ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. bio053421
Author(s):  
Prajal H. Patel ◽  
Emily C. Wilkinson ◽  
Emily L. Starke ◽  
Malea R. McGimsey ◽  
J. Todd Blankenship ◽  
...  

ABSTRACTVps54 is a subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). In the wobbler mouse, a model for human motor neuron (MN) disease, reduction in the levels of Vps54 causes neurodegeneration. However, it is unclear how disruption of the GARP complex leads to MN dysfunction. To better understand the role of Vps54 in MNs, we have disrupted expression of the Vps54 ortholog in Drosophila and examined the impact on the larval neuromuscular junction (NMJ). Surprisingly, we show that both null mutants and MN-specific knockdown of Vps54 leads to NMJ overgrowth. Reduction of Vps54 partially disrupts localization of the t-SNARE, Syntaxin-16, to the TGN but has no visible impact on endosomal pools. MN-specific knockdown of Vps54 in MNs combined with overexpression of the small GTPases Rab5, Rab7, or Rab11 suppresses the Vps54 NMJ phenotype. Conversely, knockdown of Vps54 combined with overexpression of dominant negative Rab7 causes NMJ and behavioral abnormalities including a decrease in postsynaptic Dlg and GluRIIB levels without any effect on GluRIIA. Taken together, these data suggest that Vps54 controls larval MN axon development and postsynaptic density composition through a mechanism that requires Rab7.

2020 ◽  
Author(s):  
Prajal H. Patel ◽  
Emily C. Wilkinson ◽  
Emily L. Starke ◽  
Malea R. McGimsey ◽  
J. Todd Blankenship ◽  
...  

ABSTRACTVps54 is a subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). In the wobbler mouse, a model for human motor neuron (MN) disease, reduction in the levels of Vps54 causes neurodegeneration. However, it is unclear how disruption of GARP-mediated vesicle transport leads to MN dysfunction and ultimately neurodegeneration. To better understand the role of Vps54 in MNs, we have disrupted expression of the Vps54 ortholog in Drosophila and examined the impact on the larval neuromuscular junction (NMJ). Here, we show that both null mutants and MN-specific knockdown of Vps54 leads to NMJ overgrowth. Reduction of Vps54 partially disrupts localization of the t-SNARE, Syntaxin-16, to the TGN but has no impact on endosomal pools. Presynaptic knockdown of Vps54 in MNs combined with overexpression of the small GTPases Rab5, Rab7, or Rab11 suppresses the Vps54 NMJ phenotype. Conversely, knockdown of Vps54 combined with overexpression of dominant negative Rab7 causes axonal and behavioral abnormalities including a decrease in postysynaptic Dlg and GluRIIB levels without any effect on GluRIIA. Taken together, these data suggest that Vps54 controls larval MN axon development and postsynaptic density composition by modulating Rab7-mediated endosomal trafficking.


2021 ◽  
Vol 14 ◽  
pp. 117864692110266
Author(s):  
Yuki Murakami ◽  
Yukio Imamura ◽  
Yoshiyuki Kasahara ◽  
Chihiro Yoshida ◽  
Yuta Momono ◽  
...  

Viral infection and chronic maternal inflammation during pregnancy are correlated with a higher prevalence of autism spectrum disorder (ASD). However, the pathoetiology of ASD is not fully understood; moreover, the key molecules that can cross the placenta following maternal inflammation and contribute to the development of ASD have not been identified. Recently, the pro-inflammatory cytokine, interleukin-17A (IL-17A) was identified as a potential mediator of these effects. To investigate the impact of maternal IL-17A on offspring, C57BL/6J dams were injected with IL-17A-expressing plasmids via the tail vein on embryonic day 12.5 (E12.5), and maternal IL-17A was expressed continuously throughout pregnancy. By adulthood, IL-17A-injected offspring exhibited behavioral abnormalities, including social and cognitive defects. Additionally, maternal IL-17A promoted metabolism of the essential amino acid tryptophan, which produces several neuroactive compounds and may affect fetal neurodevelopment. We observed significantly increased levels of kynurenine in maternal serum and fetal plasma. Thus, we investigated the effects of high maternal concentration of kynurenine on offspring by continuously administering mouse dams with kynurenine from E12.5 during gestation. Obviously, maternal kynurenine administration rapidly increased kynurenine levels in the fetal plasma and brain, pointing to the ability of kynurenine to cross the placenta and change the KP metabolites which are affected as neuroactive compounds in the fetal brain. Notably, the offspring of kynurenine-injected mice exhibited behavioral abnormalities similar to those observed in offspring of IL-17A-conditioned mice. Several tryptophan metabolites were significantly altered in the prefrontal cortex of the IL-17A-conditioned and kynurenine-injected adult mice, but not in the hippocampus. Even though we cannot exclude the possibility or other molecules being related to ASD pathogenesis and the presence of a much lower degree of pathway activation, our results suggest that increased kynurenine following maternal inflammation may be a key factor in changing the balance of KP metabolites in fetal brain during neuronal development and represents a therapeutic target for inflammation-induced ASD-like phenotypes.


2002 ◽  
Vol 283 (3) ◽  
pp. C850-C865 ◽  
Author(s):  
Caterina Di Ciano ◽  
Zilin Nie ◽  
Katalin Szászi ◽  
Alison Lewis ◽  
Takehito Uruno ◽  
...  

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.


1998 ◽  
Vol 142 (1) ◽  
pp. 101-115 ◽  
Author(s):  
Tzuu-Shuh Jou ◽  
Eveline E. Schneeberger ◽  
W. James Nelson

Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.


Neuron ◽  
2017 ◽  
Vol 93 (6) ◽  
pp. 1388-1404.e10 ◽  
Author(s):  
Zachary L. Newman ◽  
Adam Hoagland ◽  
Krishan Aghi ◽  
Kurtresha Worden ◽  
Sabrina L. Levy ◽  
...  

2001 ◽  
Vol 114 (22) ◽  
pp. 4013-4024
Author(s):  
Jayasri Das Sarma ◽  
Rita A. Meyer ◽  
Fushan Wang ◽  
Valsamma Abraham ◽  
Cecilia W. Lo ◽  
...  

Cells that express multiple connexins have the capacity to form heteromeric (mixed) gap junction hemichannels. We used a dominant negative connexin construct, consisting of bacterial β-galactosidase fused to the C terminus of connexin43 (Cx43/β-gal), to examine connexin compatibility in NIH 3T3 cells. Cx43/β-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool induced by Cx43/β-gal colocalized with a medial Golgi apparatus marker and was readily disassembled by treatment with brefeldin A. This was unexpected, since previous studies indicated that Cx43 assembly into hexameric hemichannels occurs in the trans-Golgi network (TGN) and is sensitive to brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/β-gal were assembled into a subhexameric complex. Cx43/β-gal also specifically interacted with Cx46, but not Cx32, consistent with the ability of Cx43/β-gal to simultaneously inhibit multiple connexins. We confirmed that interactions between Cx43/β-gal and Cx46 reflect the ability of Cx43 and Cx46 to form heteromeric complexes, using HeLa and alveolar epithelial cells, which express both connexins. In contrast, ROS osteoblastic cells, which differentially sort Cx43 and Cx46, did not form Cx43/Cx46 heteromers. Thus, cells have the capacity to regulate whether or not compatible connexins intermix.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Michael McGregor ◽  
Shabana Din ◽  
Natalie Gude ◽  
Mark A Sussman

Rationale Cardiac stem cells (CSC) regulate cardiomyogenesis and support regenerative processes in the heart, but aging adversely affects stem cell repair capacity. Aging is a primary cause of impaired cardiac function characterized by accumulation of senescent cells. CSC senescence is associated with permanent growth arrest that decreases survival signaling and cellular replacement, inevitably diminishing the capacity of the heart to maintain tissue homeostasis. Therefore, promoting CSC growth may improve cardiac performance with age. Pim-1 kinase exhibits protective and proliferative effects in the myocardium but the role of Pim-1 in cardiac aging has not been thoroughly studied. Objective Demonstrate that Pim-1 promotes stem cell growth in the aged myocardium correlating with increased expression of centromere protein A (CENP-A), a kinetochore-associated protein known to support cell proliferation in numerous species and cell types. Methods & Results CENP-A expression levels were evaluated from murine myocardial tissue samples ranging in age from 11 days post coitum to 4 months of age with analysis by immunoblot as well as quantitative PCR. CENP-A expression was colocalized with c-kit as a marker of CSC by immunohistochemical labeling, revealing a decline in CENP-A expression over the time course of postnatal myocardial maturation. The impact of Pim-1 upon CENP-A level was assessed by comparative analysis of non-transgenic mice versus genetically modified transgenic mouse lines expressing either Pim-1 (wild type) or a dominant negative functionally dead Pim-1 mutant. Pim-1 overexpression increases persistence of CENP-A in CSCs with age, as well as the prevalence of cycling CSCs as marked by phosph-H3 expression, while the functionally dead mutant accelerates CENP-A diminution and decreases CSC proliferation. Conclusion CENP-A decline in c-kit positive cells with age provides intriguing evidence of a potential mechanism for the diminished capacity of CSCs to maintain tissue homeostasis. Pim-1 mitigates CENP-A diminution, demonstrating the promising potential of Pim-1 to promote cardiac growth and repair with age.


Sign in / Sign up

Export Citation Format

Share Document