scholarly journals Structural and Functional Regulation of Tight Junctions by RhoA and Rac1 Small GTPases

1998 ◽  
Vol 142 (1) ◽  
pp. 101-115 ◽  
Author(s):  
Tzuu-Shuh Jou ◽  
Eveline E. Schneeberger ◽  
W. James Nelson

Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.

1999 ◽  
Vol 146 (3) ◽  
pp. 683-693 ◽  
Author(s):  
Laura L. Mitic ◽  
Eveline E. Schneeberger ◽  
Alan S. Fanning ◽  
James Melvin Anderson

Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1–containing cell–cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.


1982 ◽  
Vol 242 (4) ◽  
pp. G319-G325 ◽  
Author(s):  
J. S. Reed ◽  
N. D. Smith ◽  
J. L. Boyer

In the isolated perfused liver of the little skate, Raja erinacea, bile flow averaged 5.07 +/- 0.58 (mean +/- SE) microliters.h-1.g liver-1 in 21 experiments at a perfusion pressure of 5.0 cm Ringer compared to 3.79 +/- 0.32 in 38 experiments at 2.5 cm (P less than 0.05). [14C]inulin readily entered skate bile. Bile-to-plasma [14C]inulin ratios corrected for delay in transit time, averaged 0.46 +/- 0.07 at 1 h and rose to 0.74 +/- 0.06 by 4 h, although bile flow remained constant. In experiments in which [14C]inulin reached equilibrium between bile and plasma, the bile-to-plasma ratio conformed to the theoretical relationship between bile flow, solvent drag, and inert solute diffusion predicted at extremely low bile flows, but demonstrated that the skate biliary tree is more permeable to inulin than that of the rat. Electron microscopic studies demonstrated that ionic lanthanum could traverse the tight junctions. However, freeze-fracture studies of junction structure did not differ qualitatively from similar studies in the rat. Partial dependence of bile flow on perfusion pressure, high bile-to-plasma inulin ratios, and permeability of the canalicular tight junctions to ionic lanthanum all suggest that the paracellular pathway may be an important component of bile formation in the skate.


1996 ◽  
Vol 134 (4) ◽  
pp. 1031-1049 ◽  
Author(s):  
M S Balda ◽  
J A Whitney ◽  
C Flores ◽  
S González ◽  
M Cereijido ◽  
...  

Tight junctions, the most apical of the intercellular junctions that connect individual cells in a epithelial sheet, are thought to form a seal that restricts paracellular and intramembrane diffusion. To analyze the functioning of tight junctions, we generated stable MDCK strain 2 cell lines expressing either full-length or COOH-terminally truncated chicken occludin, the only known transmembrane component of tight junctions. Confocal immunofluorescence and immunoelectron microscopy demonstrated that mutant occludin was incorporated into tight junctions but, in contrast to full-length chicken occludin, exhibited a discontinuous junctional staining pattern and also disrupted the continuous junctional ring formed by endogenous occludin. This rearrangement of occludin was not paralleled by apparent changes in the junctional morphology as seen by thin section electron microscopy nor apparent discontinuities of the junctional strands observed by freeze-fracture. Nevertheless, expression of both wild-type and mutant occludin induced increased transepithelial electrical resistance (TER). In contrast to TER, particularly the expression of COOH-terminally truncated occludin led to a severalfold increase in paracellular flux of small molecular weight tracers. Since the selectivity for size or different types of cations was unchanged, expression of wild-type and mutant occludin appears to have activated an existing mechanism that allows selective paracellular flux in the presence of electrically sealed tight junctions. Occludin is also involved in the formation of the apical/basolateral intramembrane diffusion barrier, since expression of the COOH-terminally truncated occludin was found to render MDCK cells incapable of maintaining a fluorescent lipid in a specifically labeled cell surface domain.


2004 ◽  
Vol 287 (2) ◽  
pp. C327-C335 ◽  
Author(s):  
Matthias Bruewer ◽  
Ann M. Hopkins ◽  
Michael E. Hobert ◽  
Asma Nusrat ◽  
James L. Madara

Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity.


2020 ◽  
Vol 31 (21) ◽  
pp. 2289-2297
Author(s):  
Elias T. Spiliotis ◽  
Michael A. McMurray

Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.


2002 ◽  
Vol 13 (6) ◽  
pp. 1819-1831 ◽  
Author(s):  
Anne-Marie Marzesco ◽  
Irene Dunia ◽  
Rudy Pandjaitan ◽  
Michel Recouvreur ◽  
Daniel Dauzonne ◽  
...  

Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell–cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.


2006 ◽  
Vol 290 (5) ◽  
pp. C1297-C1309 ◽  
Author(s):  
Randi Eisen ◽  
Shereaf Walid ◽  
Don R. Ratcliffe ◽  
George K. Ojakian

Previous work has established that the integrin signal transduction pathway plays an important role in the regulation of epithelial tubule formation. Furthermore, it has been demonstrated that Rho-kinase, an effector of the Rho signaling pathway, is an important downstream modulator of collagen-mediated renal and mammary epithelial tubule morphogenesis. In the present study, MDCK cells that expressed mutant dominant-negative, constitutively active Rho family GTPases were used to provide further insight into Rho-GTPase signaling and the regulation of epithelial tubule formation. Using collagen gel overlays on MDCK cells as a model system, we observed phosphorylated myosin light chain (pMLC) at the leading edge of migrating lamellipodia. This epithelial remodeling led to the formation of multicellular branching epithelial tubular structures with extensive tight junctions. However, in cells expressing dominant-negative RhoN19, MLC phosphorylation, epithelial remodeling, and tubule formation were inhibited. Instead, only small apical lumens with a solitary tight junctional ring were observed, providing further evidence that Rho signaling through Rho-kinase is important in the regulation of epithelial tubule formation. Because the present model for the Rho signaling pathway proposes that Rac plays a prominent but reciprocal role in cell regulation, experiments were conducted using cells that expressed constitutively active RacV12. When incubated with collagen gels, RacV12-expressing cells formed small apical lumens with simple tight junctions, suggesting that Rac1 signaling also has a prominent role in the regulation of epithelial morphogenesis. Complementary collagen gel overlay experiments with wild-type MDCK cells demonstrated that endogenous Rac1 activation levels decreased over a time course consistent with lamellipodia and tubule formation. Under these conditions, Rac1 was initially localized to the basolateral membrane. However, after epithelial remodeling, activated Rac1 was observed primarily in lamellipodia. These studies support a model in which Rac1 and RhoA are important modulators of epithelial tubule formation.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S30-S30
Author(s):  
Isabelle Hébert-Milette ◽  
Chloé Lévesque ◽  
Guy Charron ◽  
John Rioux

Abstract Introduction Intestinal permeability is increased in unaffected 1st degree relatives of patients with inflammatory bowel disease (IBD), and is considered a risk factor for the development of IBD, likely increasing the interactions between intestinal microorganisms and the immune system. We recently reported that C1orf106, a gene located within a genomic region associated with IBD, regulates epithelial permeability. We further demonstrated that a rare coding variant within C1orf106 (p.Y333F) decreases protein stability and that lower levels of C1orf106 protein leads altered stability of adherens junctions (AJ) and to an increase in epithelial permeability. Hypothesis In addition to altering AJ, we believe that C1orf106 is also involved in the regulation of tight junction (TJ) formation, which also impacts epithelial permeability. Objectives The objectives of the project are to (a) validate the impact of C1orf106 on tight junctions and (b) verify the impact of C1orf106 IBD-associated variants on intestinal barrier integrity. Results We observed that knocking down the expression of C1orf106 in Caco-2 cells leads to a number of phenotypes in human epithelial monolayer (2D) and spheroid (3D) cultures that are associated with alterations in TJs. Specifically, when studying the dynamic reformation of TJ in 2D cultures after transient withdrawal of calcium, which is required for TJ stability, we observed that lower levels of C1orf106 resulted in (1) decreased recovery of barrier function as measured by transepithelial electrical resistance (TEER); (2) an alteration of tight junction protein localization; and (3) thickening of the circumferential actin belt. Moreover, in 3D cultures, we observed an altered spheroid formation associated with impaired epithelial polarization. In addition, our preliminary studies of human induced pluripotent stem cell (hiPSC)-derived epithelial cultures support that Y333F heterozygotes also have altered structure and function of their tight junctions. Conclusion Our observations indicate an important role of C1orf106 in apical junctional complex (AJC) formation likely mediated by a regulation of the circumferential actin belt. This can affect other functions of AJC, like the establishment of cell polarity. AJC formation is important for epithelial repair after an injury and its dysregulation impairs the formation of an impermeable epithelial barrier, which likely facilitates the passage of microorganisms and the induction and maintenance of intestinal inflammation.


2002 ◽  
Vol 283 (3) ◽  
pp. C850-C865 ◽  
Author(s):  
Caterina Di Ciano ◽  
Zilin Nie ◽  
Katalin Szászi ◽  
Alison Lewis ◽  
Takehito Uruno ◽  
...  

Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.


Sign in / Sign up

Export Citation Format

Share Document