scholarly journals Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord

Development ◽  
2013 ◽  
Vol 140 (7) ◽  
pp. 1594-1604 ◽  
Author(s):  
K. Yu ◽  
S. McGlynn ◽  
M. P. Matise
Author(s):  
Jill K. Frey ◽  
Aileen Chen ◽  
R. David Heathcote

All cells of the spinal cord originate from the single layer of neuroepithelium that lines the central canal. Since the turn of the century, it has been known that a subclass of these ependymal cells can differentiate into neurons and extend cytoplasmic projections and cilia into the central canal. We have recently used tyrosine hydroxylase immunocytochemistry to identify a catecholaminergic subpopulation of cerebrospinal fluid (CSF) contacting ependymal neurons in the developing spinal cord of the frog Xenopus laevis (Fig. 1). The interneurons are located in the floor plate region of the spinal cord and have axons that extend rostrally toward the hindbrain. During the morphogenesis of the catecholaminergic population of cells, two longitudinal columns gradually appear and then rapidly “converge” at the ventral midline. Transverse sections of embryonic spinal cord (see Fig. 1) showed that the cell bodies decreased in size and underwent changes in shape, number and position within the spinal cord.


Brain Repair ◽  
1990 ◽  
pp. 199-211
Author(s):  
T. M. Jessell ◽  
P. Bovolenta ◽  
D. Karagogeos ◽  
M. Placzek ◽  
M. Tessier-Lavigne ◽  
...  

2009 ◽  
Vol 126 ◽  
pp. S219
Author(s):  
Vanessa Ribes ◽  
Nikolaos Balaskas ◽  
Noriaki Sasai ◽  
Eric Dessaud ◽  
Catarina Cruz ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Heejin Nam ◽  
Shin Jeon ◽  
Hyejin An ◽  
Jaeyoung Yoo ◽  
Hyo-Jong Lee ◽  
...  

During spinal cord development, Sonic hedgehog (Shh), secreted from the floor plate, plays an important role in the production of motor neurons by patterning the ventral neural tube, which establishes MN progenitor identity. It remains unknown, however, if Shh signaling plays a role in generating columnar diversity of MNs that connect distinct target muscles. Here, we report that Shh, expressed in MNs, is essential for the formation of lateral motor column (LMC) neurons in vertebrate spinal cord. This novel activity of Shh is mediated by its downstream effector ARHGAP36, whose expression is directly induced by the MN-specific transcription factor complex Isl1-Lhx3. Furthermore, we found that AKT stimulates the Shh activity to induce LMC MNs through the stabilization of ARHGAP36 proteins. Taken together, our data reveal that Shh, secreted from MNs, plays a crucial role in generating MN diversity via a regulatory axis of Shh-AKT-ARHGAP36 in the developing mouse spinal cord.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2759-2770 ◽  
Author(s):  
M.P. Matise ◽  
D.J. Epstein ◽  
H.L. Park ◽  
K.A. Platt ◽  
A.L. Joyner

Induction of the floor plate at the ventral midline of the neural tube is one of the earliest events in the establishment of dorsoventral (d/v) polarity in the vertebrate central nervous system (CNS). The secreted molecule, Sonic hedgehog, has been shown to be both necessary and sufficient for this induction. In vertebrates, several downstream components of this signalling pathway have been identified, including members of the Gli transcription factor family. In this study, we have examined d/v patterning of the CNS in Gli2 mouse mutants. We have found that the floor plate throughout the midbrain, hindbrain and spinal cord does not form in Gli2 homozygotes. Despite this, motoneurons and ventral interneurons form in their normal d/v positions at 9.5 to 12.5 days postcoitum (dpc). However, cells that are generated in the region flanking the floor plate, including dopaminergic and serotonergic neurons, were greatly reduced in number or absent in Gli2 homozygous embryos. These results suggest that early signals derived from the notochord can be sufficient for establishing the basic d/v domains of cell differentiation in the ventral spinal cord and hindbrain. Interestingly, the notochord in Gli2 mutants does not regress ventrally after 10.5 dpc, as in normal embryos. Finally, the spinal cord of Gli1/Gli2 zinc-finger-deletion double homozygous mutants appeared similar to Gli2 homozygotes, indicating that neither gene is required downstream of Shh for the early development of ventral cell fates outside the ventral midline.


Sign in / Sign up

Export Citation Format

Share Document