scholarly journals Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells

Development ◽  
1987 ◽  
Vol 100 (2) ◽  
pp. 339-349 ◽  
Author(s):  
L. Pardanaud ◽  
C. Altmann ◽  
P. Kitos ◽  
F. Dieterlen-Lievre ◽  
C.A. Buck

QH1, a monoclonal antibody that recognizes quail endothelial and haemopoietic cells, was applied to quail blastodiscs in toto, in order to analyse by immunofluorescence the emergence of the vascular tree. The first endothelial cells were detected in the area opaca at the headfold stage and in the area pellucida at the 1-somite stage. Single cells then interconnected progressively, especially in the anterior intestinal portal and along the somites building up the linings of the heart and dorsal aortas. This study demonstrates that endothelial cells differentiate as single entities 4 h earlier in development than hitherto detected and that the vascular network forms secondarily. The horseshoe shape of the extraembryonic area vasculosa is also a secondary acquisition. A nonvascularized area persists until later (at least the 14-somite stage) in the region of the regressing primitive streak.

Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 156-163 ◽  
Author(s):  
J Palis ◽  
KE McGrath ◽  
PD Kingsley

The blood islands of the visceral yolk sac (VYS) are the initial sites of hematopoiesis in mammals. We have developed a yolk sac explant culture system to study the process of blood cell and endothelial cell development from extraembryonic mesoderm cells. No benzidine-positive cells or beta H1-globin mRNA expression was detected at the primitive streak or neural plate stage of development (E7.5). However, when isolated E7.5 dissected tissues were cultured for 36 to 72 hours in serum-free medium, hundreds of hemoglobin-producing cells and embryonic globin gene expression were identified in both intact yolk sac and VYS mesoderm explants. Explanted E7.5 extraembryonic mesoderm tissues thus recapitulate in vivo primitive erythropoiesis and do not require the presence of a vascular network or the VYS endoderm. Yolk sac blood islands also contain endothelial cells that arise by vasculogenesis and express flk-1. We detected flk-1 mRNA as early as the primitive streak stage of mouse embryogenesis. Culture of embryo proper and intact VYS explants, which contain both mesoderm and endoderm cells, produced capillary networks and expressed flk-1. In contrast, vascular networks were not seen when VYS mesoderm was cultured alone, although flk-1 expression was similar to that of intact VYS explants. The addition of vascular endothelial growth factor to VYS mesoderm explants did not induce vascular network formation. These results suggest that the VYS endoderm or its extracellular matrix is necessary for the coalescence of developing endothelial cells into capillary networks.


Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 473-485 ◽  
Author(s):  
L. Pardanaud ◽  
F. Yassine ◽  
F. Dieterlen-Lievre

Quail-chick intracoelomic grafts of organ rudiments were used to study the origin of endothelia and haemopoietic cells during avian organogenesis in conjunction with the monoclonal antibody QH1 which recognizes the quail haemangioblastic lineage. Results differed according to the germ-layer constitution of the grafted rudiments. In the case of the limb buds, endothelial cells from the host invaded the graft through an angiogenic process. Haemopoietic progenitors from the host also colonized the grafted bone marrow. In contrast, rudiments of internal organs provided their own contingent of endothelial precursors, a process termed vasculogenesis. Nevertheless, haemopoietic cells in these organs were all derived from the host. In the lung, this extrinsic cell population appeared regularly scattered around the parabronchi and had a macrophage-like phenotype. In the pancreas, the granulocytes which differentiate as dense aggregates located in the wall of the largest vessels were extrinsic. Similarly in the spleen, a mesodermal primordium that develops in close association with the pancreatic endoderm, endothelial cells were intrinsic and haemopoietic cells host-derived. This study demonstrates that, in ontogeny, vascularization obeys different rules depending on which germ layer the mesoderm is associated with: in mesodermal/ectodermal rudiments angiogenesis is the rule; in mesodermal/endodermal rudiments, vasculogenesis occurs. However, in these internal organs undergoing vasculogenesis, endothelial and haemopoietic cells have separate origins. We put forward the hypothesis that the endoderm induces the emergence of endothelial cells in the associated mesoderm. Formation of blood stem cells may also involve interactions between endoderm and mesoderm, but in this case the responding capacity of the mesoderm appears restricted to the paraaortic region.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 735-748 ◽  
Author(s):  
J.D. Coffin ◽  
T.J. Poole

The development of the embryonic vasculature is examined here using a monoclonal antibody, QH-1, capable of labelling the presumptive endothelial cells of Japanese quail embryos. Antibody labelling is first seen within the embryo proper at the 1-somite stage. Scattered labelling of single cells appears ventral to the somites and at the lateral edges of the anterior intestinal portal. The dorsal aorta soon forms a continuous cord at the ventrolateral edge of the somites and continues into the head to fuse with the ventral aorta forming the first aortic arch by the 6-somite stage. The rudiments of the endocardium fuse at the midline above the anterior intestinal portal by the 3-somite stage and the ventral aorta extends craniad. Intersomitic arteries begin to sprout off of the dorsal aorta at the 7-somite stage. The posterior cardinal vein forms from single cells which segregate from somatic mesoderm at the 7-somite stage to form a loose plexus which moves mediad and wraps around the developing Wolffian duct in later stages. These studies suggest two modes of origin of embryonic blood vessels. The dorsal aortae and cardinal veins apparently arise in situ by the local segregation of presumptive endothelial cells from the mesoderm. The intersomitic arteries, vertebral arteries and cephalic vasculature arise by sprouts from these early vessel rudiments. There also seems to be some cell migration in the morphogenesis of endocardium, ventral aorta and aortic arches. The extent of presumptive endothelial migration in these cases, however, needs to be clarified by microsurgical intervention.


Development ◽  
1970 ◽  
Vol 24 (3) ◽  
pp. 497-509
Author(s):  
Glenn C. Rosenquist

The origin of the prelung cells was determined by tracing the movements of [3H]thymidinelabelled grafts excised from medium-streak to 4-somite stage chick embryos and transplanted to the epiblast, streak, and endoderm-mesoderm of similarly staged recipient embryos. At the medium-streak stage the prelung endoderm cells are in the anterior third of the primitive streak; they shortly begin to migrate anteriorly and laterally into the endoderm layer. They are folded into the gut beginning at about the 4-somite stage, and begin to reach their definitive position in the ventrolateral gut wall at the 10- to 16-somite stage. At the ± 22-somite stage the prelung endoderm begins to burrow into the overlying splanchnic layer of mesoderm, pushing the prelung mesoderm ahead of it. At the medium-streak stage the prelung mesoderm is in the epiblast (dorsal) layer about half-way to the lateral margin of the area pellucida on either side of the streak, at a level about half-way between the anterior and posterior ends of the streak. From this position the prelung mesoderm migrates medially to the streak and is invaginated into the mesoderm layer at a position about half-way between the anterior and posterior ends of the streak. As a section of the dorsal mesentery, it migrates anteriorly and laterally from the streak into the splanchnic mesoderm lateral to the somites. From the head process stage to the early somite stages, the prelung mesoderm is located posterior to the prelung endoderm. The prelung mesoderm continues to migrate with the splanchnic mesoderm into the mesentery dorsal to the heart, where it invests the prelung endoderm after the 16- to 19-somite stage. Beginning at about the 22-somite stage, the prelung endoderm penetrates the prelung mesoderm and the bilateral bronchi are formed.


Development ◽  
1968 ◽  
Vol 20 (3) ◽  
pp. 247-260
Author(s):  
Teresa Rogulska

Suggestive evidence for the extragonadal origin of germ cells in birds was first presented by Swift (1914), who described primordial germ cells in the chick embryo at as early a stage as the primitive streak. According to Swift, primordial germ cells are originally located extra-embryonically in the anterior part of the blastoderm and occupy a crescent-shaped region (‘germinal crescent’) on the boundary between area opaca and area pellucida. Swift also found that primordial germ cells later enter into the blood vessels, circulate together with the blood throughout the whole blastoderm and finally penetrate into the genital ridges, where they become definitive germ cells. Swift's views have been confirmed in numerous descriptive and experimental investigations. Among the latter, the publications of Willier (1937), Simon (1960) and Dubois (1964a, b, 1965a, b, 1966) merit special attention. Dubois finally proved that the genital ridges exert a strong chemotactic influence on the primordial germ cells.


Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 819-830 ◽  
Author(s):  
H. Eyal-Giladi ◽  
A. Debby ◽  
N. Harel

Posterior marginal zone sections with or without Koller's sickle were cut out of stage X, XI and XII E.G&K blastoderms, labelled with the fluorescent dye rhodamine-dextran-lysine (RDL) and returned to their original location. In control experiments, a similar lateral section of the marginal zone was identically treated. Different blastoderms were incubated at 37°C for different periods and were fixed after reaching stages from XII E.G&K to 4 H&H. The conclusions drawn from the analysis of the distribution pattern of the labelled cells in the serially sectioned blastoderms concern the cellular contributions to both the forming hypoblast and the forming primitive streak. Koller's sickle and the marginal zone behind it were found to contribute all the centrally located cells of the growing hypoblast. The lengthening pregastrulation PS (until stage 3+ H&H) was found to be entirely composed of epiblastic cells that at stage X were located in a narrow strip anterior to Koller's sickle. A model is proposed to integrate the results spatially and temporally.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5127-5138 ◽  
Author(s):  
S.B. Shah ◽  
I. Skromne ◽  
C.R. Hume ◽  
D.S. Kessler ◽  
K.J. Lee ◽  
...  

In the chick embryo, the primitive streak is the first axial structure to develop. The initiation of primitive streak formation in the posterior area pellucida is influenced by the adjacent posterior marginal zone (PMZ). We show here that chick Vg1 (cVg1), a member of the TGFbeta family of signalling molecules whose homolog in Xenopus is implicated in mesoderm induction, is expressed in the PMZ of prestreak embryos. Ectopic expression of cVg1 protein in the marginal zone chick blastoderms directs the formation of a secondary primitive streak, which subsequently develops into an ectopic embryo. We have used cell marking techniques to show that cells that contribute to the ectopic primitive streak change fate, acquiring two distinct properties of primitive streak cells, defined by gene expression and cell movements. Furthermore, naive epiblast explants exposed to cVg1 protein in vitro acquire axial mesodermal properties. Together, these results show that cVg1 can mediate ectopic axis formation in the chick by inducing new cell fates and they permit the analysis of distinct events that occur during primitive streak formation.


Development ◽  
1999 ◽  
Vol 126 (13) ◽  
pp. 3015-3025 ◽  
Author(s):  
G.H. Fong ◽  
L. Zhang ◽  
D.M. Bryce ◽  
J. Peng

We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(−/−) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(−/−) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(−/−) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(−/−) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(−/−) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(−/−) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.


Sign in / Sign up

Export Citation Format

Share Document