Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro

Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 297-312 ◽  
Author(s):  
G.L. Decker ◽  
J.B. Morrill ◽  
W.J. Lennarz

An in vitro culture system for primary mesenchyme cells of the sea urchin embryo has been used to study the cellular characteristics of skeletal spicule formation. As judged initially by light microscopy, these cells attached to plastic substrata, migrated and fused to form syncytia in which mineral deposits accumulated in the cell bodies and in specialized filopodial templates. Subsequent examination by scanning electron microscopy revealed that the cell bodies and the filopodia and lamellipodia formed spatial associations similar to those seen in the embryo and indicated that the spicule was surrounded by a membrane-limited sheath derived by fusion of the filopodia. The spicules were dissolved from living or fixed cells by a chelator of divalent cations or by lowering the pH of the medium. However, granular deposits found in the cell bodies appeared relatively refractory to such treatments, indicating that they were inaccessible to agents that dissolved the spicules. Use of rapid freezing and an anhydrous fixative to preserve the syncytia for transmission electron microscopy and X-ray microprobe analysis, indicated that electron-dense deposits in the cell bodies contain elements (Ca, Mg and S) common to the spicule. Examination of the spicule cavity after dissolution of the spicule mineral revealed openings in the filopodia-derived sheath, coated pits within the limiting membrane and a residual matrix that stained with ruthenium red. Concanavalin A—gold applied exogenously entered the spicule cavity and bound to matrix glycoproteins. Based on these observations, we conclude that components of the spicule initially are sequestered intracellularly and that spicule elongation occurs in an extracellular cavity. Ca2+ and associated glycoconjugates may be routed in this cavity via a secretory pathway.

1989 ◽  
Vol 109 (3) ◽  
pp. 1289-1299 ◽  
Author(s):  
M C Farach-Carson ◽  
D D Carson ◽  
J L Collier ◽  
W J Lennarz ◽  
H R Park ◽  
...  

We have previously identified a 130-kD cell surface protein that is involved in calcium uptake and skeleton formation by gastrula stage embryos of the sea urchin Strongylocentrotus purpuratus (Carson et al., 1985. Cell. 41:639-648). A monoclonal antibody designated mAb 1223 specifically recognizes the 130-kD protein and inhibits Ca+2 uptake and growth of the CaCO3 spicules produced by embryonic primary mesenchyme cells cultured in vitro. In this report, we demonstrate that the epitope recognized by mAb 1223 is located on an anionic, asparagine-linked oligosaccharide chain on the 130-kD protein. Combined enzymatic and chemical treatments indicate that the 1223 oligosaccharide contains fucose and sialic acid that is likely to be O-acetylated. Moreover, we show that the oligosaccharide chain containing the 1223 epitope specifically binds divalent cations, including Ca+2. We propose that one function of this negatively charged oligosaccharide moiety on the surfaces of primary mesenchyme cells is to facilitate binding and sequestration of Ca+2 ions from the blastocoelic fluid before internalization and subsequent deposition into the growing CaCO3 skeleton.


1985 ◽  
Vol 101 (4) ◽  
pp. 1487-1491 ◽  
Author(s):  
H Katow ◽  
M Hayashi

We studied the effect of fibronectin (FN) on the behavior of primary mesenchyme cells isolated from sea urchin mesenchyme blastulae in vitro using a time-lapse technique. The migration of isolated primary mesenchyme cells reconstituted in seawater and horse serum is dependent on the presence or absence of exogenous FN in the culture media. The cells in FN, 4 and 40 micrograms/ml, show a high percentage of migration and migrate long distances, whereas a higher concentration of FN at 400 micrograms/ml tends to inhibit migration.


Author(s):  
G.L. Decker ◽  
M.C. Valdizan

A monoclonal antibody designated MAb 1223 has been used to show that primary mesenchyme cells of the sea urchin embryo express a 130-kDa cell surface protein that may be directly involved in Ca2+ uptake required for growth of skeletal spicules. Other studies from this laboratory have shown that the 1223 antigen, although in relatively low abundance, is also expressed on the cell surfaces of unfertilized eggs and on the majority of blastomeres formed prior to differentiation of the primary mesenchyme cells.We have studied the distribution of 1223 antigen in S. purpuratus eggs and embryos and in isolated egg cell surface complexes that contain the cortical secretory vesicles. Specimens were fixed in 1.0% paraformaldehyde and 1.0% glutaraldehyde and embedded in Lowicryl K4M as previously reported. Colloidal gold (8nm diameter) was prepared by the method of Mulpfordt.


1983 ◽  
Vol 61 (1) ◽  
pp. 175-189
Author(s):  
R. Kuriyama ◽  
G.G. Borisy

Conditions that induce the formation of asters in unfertilized sea-urchin eggs have been investigated. Monasters were formed by treatment of eggs with acidic or basic sea-water, or procaine- or thymol-containing sea-water. A second treatment step, incubation with D2O-containing, ethanol-containing or hypertonic sea-water induced multiple cytasters. The number and size of cytasters varied according to the concentration of agents and duration of the first and second treatments, and also upon the species of eggs and the season in which the eggs were obtained. Generally, a longer second treatment or a higher concentration of the second medium resulted in a higher number of cytasters per egg. Asters were isolated and then examined by light and electron microscopy. Isolated monasters apparently lacked centrioles, whereas cytasters obtained from eggs undergoing the two-step treatment contained one or more centrioles. Up to eight centrioles were seen in a single aster; the centrioles appeared to have been produced during the second incubation. Centrospheres prepared from isolated asters retained the capacity to nucleate the formation of microtubules in vitro as assayed by light and electron microscopy. Many microtubules radiated from the centre of isolated asters, whether they contained centrioles or not. This observation is consistent with many other reports that microtubule-organizing centres need not contain centrioles.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 255-265 ◽  
Author(s):  
J.A. Anstrom ◽  
J.E. Chin ◽  
D.S. Leaf ◽  
A.L. Parks ◽  
R.A. Raff

In this report, we use a monoclonal antibody (B2C2) and antibodies against a fusion protein (Leaf et al. 1987) to characterize msp130, a cell surface protein specific to the primary mesenchyme cells of the sea urchin embryo. This protein first appears on the surface of these cells upon ingression into the blastocoel. Immunoelectronmicroscopy shows that msp130 is present in the trans side of the Golgi apparatus and on the extracellular surface of primary mesenchyme cells. Four precursor proteins to msp130 are identified and we show that B2C2 recognizes only the mature form of msp130. We demonstrate that msp130 contains N-linked carbohydrate groups and that the B2C2 epitope is sensitive to endoglycosidase F digestion. Evidence that msp130 is apparently a sulphated glycoprotein is presented. The recognition of the B2C2 epitope of msp130 is disrupted when embryos are cultured in sulphate-free sea water. In addition, two-dimensional immunoblots show that msp130 is an acidic protein that becomes substantially less acidic in the absence of sulphate. We also show that two other independently derived monoclonal antibodies, IG8 (McClay et al. 1983; McClay, Matranga & Wessel, 1985) and 1223 (Carson et al. 1985), recognize msp130, and suggest this protein to be a major cell surface antigen of primary mesenchyme cells.


1989 ◽  
Vol 181 (2) ◽  
pp. 542-550 ◽  
Author(s):  
Judith L. Roe ◽  
Helen R. Park ◽  
Warren J. Strittmatter ◽  
William J. Lennarz

Sign in / Sign up

Export Citation Format

Share Document