Cytasters induced within unfertilized sea-urchin eggs

1983 ◽  
Vol 61 (1) ◽  
pp. 175-189
Author(s):  
R. Kuriyama ◽  
G.G. Borisy

Conditions that induce the formation of asters in unfertilized sea-urchin eggs have been investigated. Monasters were formed by treatment of eggs with acidic or basic sea-water, or procaine- or thymol-containing sea-water. A second treatment step, incubation with D2O-containing, ethanol-containing or hypertonic sea-water induced multiple cytasters. The number and size of cytasters varied according to the concentration of agents and duration of the first and second treatments, and also upon the species of eggs and the season in which the eggs were obtained. Generally, a longer second treatment or a higher concentration of the second medium resulted in a higher number of cytasters per egg. Asters were isolated and then examined by light and electron microscopy. Isolated monasters apparently lacked centrioles, whereas cytasters obtained from eggs undergoing the two-step treatment contained one or more centrioles. Up to eight centrioles were seen in a single aster; the centrioles appeared to have been produced during the second incubation. Centrospheres prepared from isolated asters retained the capacity to nucleate the formation of microtubules in vitro as assayed by light and electron microscopy. Many microtubules radiated from the centre of isolated asters, whether they contained centrioles or not. This observation is consistent with many other reports that microtubule-organizing centres need not contain centrioles.

1997 ◽  
Vol 10 (01) ◽  
pp. 6-11 ◽  
Author(s):  
R. F. Rosenbusch ◽  
L. C. Booth ◽  
L. A. Dahlgren

SummaryEquine tendon fibroblasts were isolated from explants of superficial digital flexor tendon, subcultured and maintained in monolayers. The cells were characterized by light microscopy, electron microscopy and radiolabel studies for proteoglycan production. Two predominant cell morphologies were identified. The cells dedifferentiated toward a more spindle shape with repeated subcultures. Equine tendon fibroblasts were successfully cryopreserved and subsequently subcultured. The ability to produce proteoglycan was preserved.The isolated cells were identified as fibroblasts, based on their characteristic shape by light microscopy and ultrastructure and the active production of extracellular matrix proteins. Abundant rough endoplasmic reticulum and the production of extracellular matrix products demonstrated active protein production and export. Proteoglycans were measurable via liquid scintillation counting in both the cell-associated fraction and free in the supernatant. This model is currently being utilized to study the effects of polysulfated glycosaminoglycan on tendon healing. Future uses include studying the effects of other pharmaceuticals, such as hyaluronic acid, on tendon healing.A model was developed for in vitro investigations into tendon healing. Fibroblasts were isolated from equine superficial digital flexor tendons and maintained in monolayer culture. The tenocytes were characterized via light and electron microscopy. Proteoglycan production was measured, using radio-label techniques. The fibroblasts were cryopreserved and subsequently subcultured. The cells maintained their capacity for proteoglycan production, following repeated subculturing and cryopreservation.


1972 ◽  
Vol 11 (1) ◽  
pp. 249-260
Author(s):  
J. ALWEN ◽  
JENNIFER J. GALLHAI-ATCHARD

A method for preparing suspensions of adult rat hepatocytes suitable for maintenance in vitro is described. Cultures were established from the cell suspensions by the squash technique. Cells were examined by light and electron microscopy; histochemically for glycogen, bile, lipid and glucose-6-phosphatase; and by autoradiography for DNA, RNA and protein synthesis. Hepatocytes could be maintained in vitro for at least 3 days and began to aggregate after 1 day. Uridine and leucine were incorporated, but not thymidine. Cultures consisted mainly of hepatocytes, though reticulo-endothelial cells were sometimes present.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


1951 ◽  
Vol 34 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Anna Monroy Oddo ◽  
Maria Esposito

In the eggs of Arbacia lixula and Paracentrotus lividus an uptake of K occurs during the first 10 minutes following fertilization. Between 10 and 40 minutes K is then released. Both in Arbacia and in Paracentrotus the minimum point of the curve coincides with the nuclear streak stage. A maximum loss of 25 per cent in Arbacia and 20 per cent in Paracentrotus with respect to the amount present in the unfertilized eggs has been found. From 40 minutes up to 1 hour K undergoes a further increase and when the first cleavage sets in the same amount of K is present as in the unfertilized eggs. By treating the eggs with K-free artificial sea water it has been established that about 60 per cent of the K content of the eggs is in a non-diffusible condition. Also under such conditions the eggs when fertilized are able to take up even the very small amount of K present in the medium that was released by them prior to fertilization.


Development ◽  
1953 ◽  
Vol 1 (3) ◽  
pp. 261-262
Author(s):  
Sven Hörstadius

Dr. I. Joan Lorch, of King's College, London, and I have made some experiments on sea-urchin eggs with desoxynucleic acids (DNA) prepared from sperms of several sea-urchin species by Professor Erwin Chargaff, of Columbia University, New York. Unfertilized eggs did not react when put into a solution of DNA in sea-water. Injection of a small amount of DNA dissolved in Callan's solution had the following consequences. If the DNA did not mix with the cytoplasm but remained as a distinct droplet, the egg could be fertilized. The droplet moved slowly towards the surface and ran out of the egg. This sometimes only occurred after several cleavages. Such eggs developed normally. If, on the other hand, the DNA mixed with the cytoplasm the egg became activated. A fertilization membrane was raised. The surface layer in dark field changed in colour from yellow to white as is the case upon fertilization.


1968 ◽  
Vol 3 (4) ◽  
pp. 515-527
Author(s):  
J. PIATIGORSKY ◽  
A. TYLER

Unfertilized and fertilized eggs of the sea urchin Lytechinus pictus were preloaded with [14C]valine and exposed to individual solutions of each of the twenty ‘coded’ [12C]amino acids in artificial sea water. After 1 h incubation the amount of radioactivity in the medium was determined. The radioactivity was effectively displaced by most of the other neutral [12C]amino acids that are known to compete with valine for uptake. A chromatographic test with fertilized eggs showed the displaced radioactivity to be [14C]valine and not some metabolic product. Addition of acidic, basic or some neutral amino acids that are known to be poor inhibitors of valine uptake did not cause significant quantities of label to appear in the medium. For the unfertilized eggs, the concentration of acid-soluble label remained many hundreds of times greater in the egg fluid than in the sea water. Tests indicated that efflux of [14C]valine and subsequent competition for re-entry is a primary factor responsible for the displacement phenomenon. That this may not be the sole factor is suggested by the fact that some amino acids that are known to be powerful inhibitors of valine uptake were found to be only weak displacers of [14C]valine. Neither [14C]arginine nor [14C]glutamic acid were displaced in significant amounts from preloaded unfertilized or fertilized eggs by any of the tested [12C]amino acids. Attempts were made to utilize the displacement of [12C]valine to elevate the incorporation of [14C]valine and of other labelled amino acids into protein by intact eggs. Unfertilized and fertilized eggs were pretreated with related [12C]amino acids and then exposed to [14C]valine or a mixture of [14C]amino acids. The results varied in the different tests, ranging from no significant increase to 2-fold.


Development ◽  
1975 ◽  
Vol 34 (3) ◽  
pp. 633-644
Author(s):  
Danièle Hernandez-Verdun ◽  
Chantal Legrand

Mouse chorioallantoic pre-placental structures alone or in association with the embryo were explanted during the 9th day of gestation (7-somite stage) and cultured in a static medium for 24 to 48 h. From the subsequent morphological study of trophoblast differentiation, using both light and electron microscopy, we draw the following conclusions. 1. The allantoic mesoderm cells migrate inside the trophoblastic population but they do not differentiate a capillary network and trophoblast cells phagocytose the existing foetal erythrocytes. 2. In the absence of allantoic mesoderm, chorionic trophoblast cells remain undifferentiated. 3. The development of the chorionic trophoblast is modified in that chorionic trophoblast cells fail to establish close junctions with ectoplacental trophoblast, and some chorionic cells initiate the formation of multinucleated syncytia. The genesis of these syncytia is discussed.


1963 ◽  
Vol 18 (1) ◽  
pp. 181-194 ◽  
Author(s):  
Alden V. Loud ◽  
Yutaka Mishima

The induction of melanization in xanthic goldfish scales with ACTH in vitro has been studied by light and electron microscopy utilizing ammoniated silver nitrate staining of premelanin and melanin. The melanized cells (melanophores and melanocytes) and the yellow pigmented cells (lipophores and the newly described lipocytes) were found to possess many similarities at the levels of cellular and subcellular structure. The latter cells contain characteristic cytoplasmic bodies which react positively to the premelanin stain. Changes accompanying ACTH stimulation of goldfish scales in tissue culture suggest that these bodies in the lipocytes and lipophores can become melanized. Electron micrographs illustrate the intermediate staining of newly formed melanin granules in an induced melanocyte and the appearance of a transitional melanolipophore. It is postulated that ACTH can promote the association of the enzyme tyrosinase with the preformed structure of unmelanized granules.


1979 ◽  
Vol 82 (1) ◽  
pp. 212-226 ◽  
Author(s):  
A Spudich ◽  
J A Spudich

Triton-treated cortical fragments of unfertilized and fertilized sea urchin eggs prepared in the presence of greater than or equal to 5 mM EGTA contain 15-30% of the total egg actin. However, actin filaments are not readily apparent by electron microscopy on the cortical fragments of unfertilized eggs but are numerous on those of fertilized eggs. The majority of the actin associated with cortical fragments of unfertilized eggs is solubilized by dialysis against a low ionic strength buffer at pH 7.5. This soluble actin preparation (less than 50% pure actin) does not form proper filaments in 0.1 M KCl and 3 mM MgCl2, whereas actin purified from this preparation does, as judged by electron microscopy. Optical diffraction analysis reveals that these purified actin filaments have helical parameters very similar to those of muscle actin. Furthermore, the properties of the purified actin with regard to activation of myosin ATPase are similar to those of actin from other cell types. The possibility that actin is maintained in a nonfilamentous form on the inner surface of the unfertilized egg plasma membrane and is induced to assemble upon fertilization is discussed.


Sign in / Sign up

Export Citation Format

Share Document