Fate mapping and cell lineage analysis of Hensen's node in the chick embryo

Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 615-626 ◽  
Author(s):  
M.A. Selleck ◽  
C.D. Stern

Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3–9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.

Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 417-428 ◽  
Author(s):  
K.G. Storey ◽  
M.A. Selleck ◽  
C.D. Stern

Cell lineage analysis has revealed that the amniote organizer, Hensen's node, is subdivided into distinct regions, each containing a characteristic subpopulation of cells with defined fates. Here, we address the question of whether the inducing and regionalising ability of Hensen's node is associated with a specific subpopulation. Quail explants from Hensen's node are grafted into an extraembryonic site in a host chick embryo allowing host- and donor-derived cells to be distinguished. Cell-type- and region-specific markers are used to assess the fates of the mesodermal and neural cells that develop. We find that neural inducing ability is localised in the epiblast layer and the mesendoderm (deep portion) of the medial sector of the node. The deep portion of the posterolateral part of the node does not have neural inducing ability. Neural induction also correlates with the presence of particular prospective cell types in our grafts: chordamesoderm (notochord/head process), definitive (gut) endoderm or neural tissue. However, only grafts that include the epiblast layer of the node induce neural tissue expressing a complete range of anteroposterior characteristics, although prospective prechordal plate cells may also play a role in specification of the forebrain.


Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 761-771 ◽  
Author(s):  
K. Ito ◽  
W. Awano ◽  
K. Suzuki ◽  
Y. Hiromi ◽  
D. Yamamoto

The mushroom body (MB) is an important centre for higher order sensory integration and learning in insects. To analyse the development and organisation of the MB neuropile in Drosophila, we performed cell lineage analysis in the adult brain with a new technique that combines the Flippase (flp)/FRT system and the GAL4/UAS system. We showed that the four mushroom body neuroblasts (MBNbs) give birth exclusively to the neurones and glial cells of the MB, and that each of the four MBNb clones contributes to the entire MB structure. The expression patterns of 19 GAL4 enhancer-trap strains that mark various subsets of MB cells revealed overlapping cell types in all four of the MBNb lineages. Partial ablation of MBNbs using hydroxyurea showed that each of the four neuroblasts autonomously generates the entire repertoire of the known MB substructures.


Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2879-2889 ◽  
Author(s):  
Y. Hatada ◽  
C.D. Stern

We have used carbocyanine dyes (DiI and DiO) to generate fate maps for the epiblast layer of the chick embryo between stage X and the early primitive streak stage (stages 2–3). The overall distribution of presumptive cell types in these maps is similar to that described for other laboratory species (zebrafish, frog, mouse). Our maps also reveal certain patterns of movement for these presumptive areas. Most areas converge towards the midline and then move anteriorly along it. Interestingly, however, some presumptive tissue types do not take part in these predominant movements, but behave in a different way, even if enclosed within an area that does undergo medial convergence and anterior movement. The apparently independent behaviour of certain cell populations suggests that at least some presumptive cell types within the epiblast are already specified at preprimitive streak stages.


Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev193193 ◽  
Author(s):  
Weiyi Tang ◽  
Marianne E. Bronner

ABSTRACTSince its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.


Science ◽  
1980 ◽  
Vol 209 (4464) ◽  
pp. 1538-1541 ◽  
Author(s):  
D. Weisblat ◽  
S. Zackson ◽  
S. Blair ◽  
J. Young

Science ◽  
1978 ◽  
Vol 202 (4374) ◽  
pp. 1295-1298 ◽  
Author(s):  
D. Weisblat ◽  
R. Sawyer ◽  
G. Stent

Sign in / Sign up

Export Citation Format

Share Document