notochord cells
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 0)

Development ◽  
2021 ◽  
Author(s):  
Toby G. R. Andrews ◽  
Wolfram Pönisch ◽  
Ewa Paluch ◽  
Benjamin J Steventon ◽  
Elia Benito-Gutierrez

Embryonic tissues are shaped by the dynamic behaviours of their constituent cells. To understand such cell behaviours and how they evolved, new approaches are needed to map out morphogenesis across different organisms. Here, we apply a quantitative approach to learn how the notochord forms during the development of amphioxus, a basally-branching chordate. Using a single-cell morphometrics pipeline, we quantify the geometries of thousands of amphioxus notochord cells, and project them into a common mathematical space, termed morphospace. In morphospace, notochord cells disperse into branching trajectories of cell shape change, revealing a dynamic interplay between cell shape change and growth that collectively contribute to tissue elongation. By spatially mapping these trajectories, we identify conspicuous regional variation, both in developmental timing and trajectory topology. Finally, we show experimentally that, unlike ascidians but like vertebrates, posterior cell division is required in amphioxus to generate full notochord length, thereby suggesting this might be an ancestral chordate trait secondarily lost in ascidians. Altogether, our novel approach reveals that an unexpectedly complex scheme of notochord morphogenesis might have been present in the first chordates.


Development ◽  
2021 ◽  
Author(s):  
Susannah B.P. McLaren ◽  
Benjamin J. Steventon

How force generated by the morphogenesis of one tissue impacts the morphogenesis of other tissues to achieve an elongated embryo axis is not well understood. The notochord runs along the length of the somitic compartment and is flanked on either side by somites. Vacuolating notochord cells undergo a constrained expansion, increasing notochord internal pressure and driving its elongation and stiffening. Therefore, the notochord is appropriately positioned to play a role in mechanically elongating the somitic compartment. We use multi-photon cell ablation to remove specific regions of the notochord and quantify the impact on axis elongation. We show that anterior expansion generates a force that displaces notochord cells posteriorly relative to adjacent axial tissues, contributing to the elongation of segmented tissue during post-tailbud stages. Unexpanded cells derived from progenitors at the posterior end of the notochord provide resistance to anterior notochord cell expansion, allowing for stress generation along the AP axis. Therefore, notochord cell expansion beginning in the anterior, and addition of cells to the posterior notochord, act as temporally coordinated morphogenetic events that shape the zebrafish embryo AP axis.


2021 ◽  
pp. dmm.047001
Author(s):  
Paco López-Cuevas ◽  
Luke Deane ◽  
Yushi Yang ◽  
Chrissy L Hammond ◽  
Erika Kague

Notochordal cells play a pivotal role in vertebral column patterning, contributing to the formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during development has been associated with reduced repair capacity and IVD degeneration. Notochord cells can give rise to chordomas, a highly invasive bone cancer associated with late diagnosis. Understanding the impact of neoplastic cells during development and on the surrounding vertebral column could open avenues for earlier intervention and therapeutics. We investigated the impact of transformed notochord cells in the zebrafish skeleton using a RAS expressing line in the notochord under the control of the Kita promoter, with the advantage of adulthood endurance. Transformed cells caused damage in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with enrolment of sheath cells (col9a2+) and expression of wt1b, similar to induced notochord wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying abnormal behaviour in proximity to the notochord sheath and transformed cells, supported parallels between chordomas, wound and inflammation. Cancerous notochordal cells interfere with differentiation of sheath cells to form chordacentra domains leading to fusions and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory cells, we abrogated chordoma development and rescued the skeletal features of the vertebral column. Therefore, we showed that transformed notochord cells alter the skeleton during life, causing a wound-like phenotype and activating chronic wound response, suggesting parallels between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation as a promising target for future therapeutics.


Author(s):  
Jorge Antolio Domínguez-Bautista ◽  
Pilar Sarah Acevo-Rodríguez ◽  
Susana Castro-Obregón

Programmed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21CIP1/WAF and p16INK4A, increased activity of a lysosomal enzyme with beta-galactosidase activity (coined senescence-associated beta-galactosidase) and secretion of growth factors, interleukins, chemokines, metalloproteases, etc., collectively known as a senescent-associated secretory phenotype that instructs surrounding tissue. How wide is the distribution of programmed cell senescence during mouse development and its specific mechanisms to shape the embryo are still poorly understood. Here, we investigated whether markers of programmed cell senescence are found in the developing mouse spinal cord and notochord. We found discrete areas and developmental windows with high senescence-associated beta galactosidase in both spinal cord and notochord, which was reduced in mice embryos developed ex-utero in the presence of the senolytic ABT-263. Expression of p21CIP1/WAF was documented in epithelial cells of the spinal cord and the notochord, while p16INK4A was observed in motoneurons. Treatment with the senolytic ABT-263 decreased the number of motoneurons, supporting their senescent phenotype. Our data suggest that a subpopulation of motoneurons in the developing spinal cord, as well as some notochord cells undergo programmed cell senescence.


2021 ◽  
Author(s):  
Susannah B.P. McLaren ◽  
Benjamin J. Steventon

AbstractDuring development the embryo body progressively elongates from head-to-tail along the anterior-posterior (AP) axis. Multiple tissues contribute to this elongation through a combination of convergence and extension and/or volumetric growth. How force generated by the morphogenesis of one tissue impacts the morphogenesis of other axial tissues to achieve an elongated axis is not well understood. The notochord, a rod-shaped tissue possessed by all vertebrates, runs across the entire length of the somitic compartment and is flanked on either side by the developing somites in the segmented region of the axis and presomitic mesoderm in the posterior. Cells in the notochord undergo an expansion that is constrained by a stiff sheath of extracellular matrix, that increases the internal pressure in the notochord allowing it to straighten and elongate. Therefore, it is appropriately positioned to play a role in mechanically elongating the somitic compartment. Here, we use multi-photon mediated cell ablation to remove specific regions of the developing notochord and quantify the impact on axis elongation. We show that anterior notochord cell expansion generates a force that displaces notochord cells posteriorly relative to adjacent axial tissues and contributes to the elongation of segmented tissue during post-tailbud stages of development. Crucially, unexpanded cells derived from progenitors at the posterior end of the notochord provide resistance to anterior notochord cell expansion, allowing for force generation across the AP axis. Therefore, notochord cell expansion beginning in the anterior, and addition of cells to the posterior notochord, act as temporally coordinated morphogenetic events that shape the zebrafish embryo AP axis.


2020 ◽  
Author(s):  
Paco Lopez-Cuevas ◽  
Luke Deane ◽  
Yushi Yang ◽  
Chrissy L Hammond ◽  
Erika Kague

Notochordal cells play a pivotal role in vertebral column patterning, contributing to the formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during development has been associated with reduced repair capacity and IVD degeneration. Notochordal remnants are known to cause chordomas, a highly invasive bone cancer associated with late diagnosis. Understanding the impact of neoplastic cells during development and on the surrounding vertebral column could open avenues for earlier intervention and therapeutics. We investigated the impact of transformed notochord cells in the zebrafish skeleton using a RAS expressing line in the notochord under the control of the Kita promoter, with the advantage of adulthood endurance. Transformed cells caused damage in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with enrolment of sheath cells (col9a2+) and expression of wt1b, similar to induced notochord wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying abnormal behaviour in proximity to the notochord sheath and transformed cells, supported parallels between chordomas, wound and inflammation. Cancerous notochordal cells interfere with differentiation of sheath cells to form chordacentra domains leading to fusions and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory cells, we abrogated chordoma development and rescued the skeletal features of the vertebral column. Therefore, we showed that transformed notochord cells alter the skeleton during life, causing a wound-like phenotype and activating chronic wound response, suggesting parallels between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation as a promising target for future therapeutics.


2020 ◽  
Author(s):  
Jason W. Sinclair ◽  
David R. Hoying ◽  
Erica Bresciani ◽  
Damian Dalle Nogare ◽  
Carli D. Needle ◽  
...  

AbstractMammals are generally poor at tissue regeneration, in contrast, fish maintain a high capacity for regenerating complex tissues after injury. Using larval zebrafish, we show that tail amputation triggers an metabolic shift to glycolysis in cells surrounding the notochord as they reposition to the amputation site. Blocking glycolysis prevents the fin from regenerating after amputation due to the failure to form a normal, pluripotent blastema. We performed a time series of scRNA-sequencing on regenerating tails under normal conditions or in the absence of glycolysis. Strikingly, we detected a transient cell population in the single cell analysis that represents notochord sheath cells undergoing a TGF–β dependent dedifferentiation and epithelium-to-mesenchyme transition to become pluripotent blastema cells. We further demonstrated that the metabolic switch to glycolysis is required for TGF–β signaling and blocking either glycolysis or TGF–β receptors results in aberrant blastema formation through the suppression of essential EMT mediators such as snai1.


Author(s):  
Ye-Wheen Lim ◽  
Harriet P. Lo ◽  
Thomas E. Hall ◽  
Robert G. Parton

2020 ◽  
Author(s):  
Jason W. Sinclair ◽  
David R. Hoying ◽  
Erica Bresciani ◽  
Damian Dalle Nogare ◽  
Carli D. Needle ◽  
...  

2018 ◽  
Author(s):  
Maria Montserrat Garcia Romero ◽  
Gareth McCathie ◽  
Philip Jankun ◽  
Henry Hamilton Roehl

AbstractAquatic vertebrates have a remarkable ability to regenerate limbs and tails after amputation. Previous studies indicate that reactive oxygen species (ROS) signaling initiates regeneration, but the mechanism by which this takes place is poorly understood. Developmental signalling pathways have been shown to have pro-regenerative roles in many systems. However, whether these are playing roles that are specific to regeneration, or are simply recapitulating their developmental functions is unclear. We have analysed zebrafish larval tail regeneration and find evidence that ROS released upon wounding cause repositioning of notochord cells to the damage site. These cells secrete Hedgehog ligands which are required for regeneration. Hedgehog signalling is not required for normal tail development suggesting that it has a regeneration specific role. Our results provide a model for how ROS initiate tail regeneration, and indicate that developmental signaling pathways can play regenerative functions that are not directly related to their developmental roles.


Sign in / Sign up

Export Citation Format

Share Document