scholarly journals Cell lineage analysis of the avian neural crest

Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 17-22 ◽  
Author(s):  
Marianne Bronner-Fraser ◽  
Scott E. Fraser

Neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. A major unanswered question concerning the neural crest is when and how the neural crest cells become determined to adopt a particular fate. We have explored the developmental potential of trunk neural crest cells in avian embryos by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells within the dorsal neural tube. We find that premigratory and emigrating neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. These results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after emigration from the neural tube either during their migration or at their sites of localization. To determine whether neural crest cells become restricted during their migration, we have microinjected individual trunk neural crest cells with dye shortly after they leave the neural tube or as they migrate through the somite. We find that a majority of the clones derived from migrating neural crest cells appear to be multipotent; individual migrating neural crest cells gave rise to both sensory and sympathetic neurons, as well as cells with the morphological characteristics of Schwann cells, and other nonneuronal cells. Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. These data demonstrate that migrating trunk neural crest cells, like their premigratory progenitors, can be multipotent. They give rise to cells in multiple neural crest derivatives and contribute to both neuronal and non-neuronal elements within a given derivative. Thus, restriction of neural crest cell fate must occur relatively late in migration or at the final destinations.

Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 913-920 ◽  
Author(s):  
S.E. Fraser ◽  
M. Bronner-Fraser

Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural tube either during their migration or at their sites of localization. Here, we test the developmental potential of migrating trunk neural crest cells by microinjecting a vital dye, lysinated rhodamine dextran (LRD), into individual cells as they migrate through the somite. By two days after injection, the LRD-labelled clones contained from 2 to 67 cells, which were distributed unilaterally in all embryos. Most clones were confined to a single segment, though a few contributed to sympathetic ganglia over two segments. A majority of the clones gave rise to cells in multiple neural crest derivatives. Individual migrating neural crest cells gave rise to both sensory and sympathetic neurons (neurofilament-positive), as well as cells with the morphological characteristics of Schwann cells, and other non-neuronal cells (both neurofilament-negative). Even those clones contributing to only one neural crest derivative often contained both neurofilament-positive and neurofilament-negative cells. Our data demonstrate that migrating trunk neural crest cells can be multipotent, giving rise to cells in multiple neural crest derivatives, and contributing to both neuronal and non-neuronal elements within a given derivative.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 495-503 ◽  
Author(s):  
D.W. Raible ◽  
J.S. Eisen

To learn when cell fate differences first arise in the zebrafish trunk neural crest, individual premigratory crest cells were labeled intracellularly with fluorescent vital dyes, followed in living embryos and complete lineages recorded. Although some of the earliest cells to migrate produced derivatives of multiple phenotypes, most zebrafish trunk neural crest cells appear to be lineage-restricted, generating type-restricted precursors that produce single kinds of derivatives. Further, cells that produce derivatives of multiple phenotypes appear to do so by first generating type-restricted precursors. Among the various types of derivatives, sensory and sympathetic cells arise only from early migrating crest cells. Some type-restricted precursors display cell-type-specific characteristics while still migrating. Taken together, these observations suggest that some trunk neural crest cells are specified before reaching their final locations.


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 5055-5067 ◽  
Author(s):  
J.P. Liu ◽  
T.M. Jessell

The differentiation of neural crest cells from progenitors located in the dorsal neural tube appears to involve three sequential steps: the specification of premigratory neural crest cell fate, the delamination of these cells from the neural epithelium and the migration of neural crest cells in the periphery. BMP signaling has been implicated in the specification of neural crest cell fate but the mechanisms that control the emergence of neural crest cells from the neural tube remain poorly understood. To identify molecules that might function at early steps of neural crest differentiation, we performed a PCR-based screen for genes induced by BMPs in chick neural plate cells. We describe the cloning and characterization of one gene obtained from this screen, rhoB, a member of the rho family GTP-binding proteins. rhoB is expressed in the dorsal neural tube and its expression persists transiently in migrating neural crest cells. BMPs induce the neural expression of rhoB but not the more widely expressed rho family member, rhoA. Inhibition of rho activity by C3 exotoxin prevents the delamination of neural crest cells from neural tube explants but has little effect on the initial specification of premigratory neural crest cell fate or on the later migration of neural crest cells. These results suggest that rhoB has a role in the delamination of neural crest cells from the dorsal neural tube.


Development ◽  
2001 ◽  
Vol 128 (21) ◽  
pp. 4127-4138 ◽  
Author(s):  
Mirella Dottori ◽  
Michael K. Gross ◽  
Patricia Labosky ◽  
Martyn Goulding

The neural crest is a migratory cell population that gives rise to multiple cell types in the vertebrate embryo. The intrinsic determinants that segregate neural crest cells from multipotential dorsal progenitors within the neural tube are poorly defined. In this study, we show that the winged helix transcription factor Foxd3 is expressed in both premigratory and migratory neural crest cells. Foxd3 is genetically downstream of Pax3 and is not expressed in regions of Pax3 mutant mice that lack neural crest, implying that Foxd3 may regulate aspects of the neural crest differentiation program. We show that misexpression of Foxd3 in the chick neural tube promotes a neural crest-like phenotype and suppresses interneuron differentiation. Cells that ectopically express Foxd3 upregulate HNK1 and Cad7, delaminate and emigrate from the neural tube at multiple dorsoventral levels. Foxd3 does not induce Slug and RhoB, nor is its ability to promote a neural crest-like phenotype enhanced by co-expression of Slug. Together these results suggest Foxd3 can function independently of Slug and RhoB to promote the development of neural crest cells from neural tube progenitors.


Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev193193 ◽  
Author(s):  
Weiyi Tang ◽  
Marianne E. Bronner

ABSTRACTSince its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.


2017 ◽  
Vol 114 (50) ◽  
pp. 13200-13205 ◽  
Author(s):  
J. Andrew Gillis ◽  
Els C. Alsema ◽  
Katharine E. Criswell

Cartilaginous fishes (e.g., sharks and skates) possess a postcranial dermal skeleton consisting of tooth-like “denticles” embedded within their skin. As with teeth, the principal skeletal tissue of dermal denticles is dentine. In the head, cranial neural crest cells give rise to the dentine-producing cells (odontoblasts) of teeth. However, trunk neural crest cells are generally regarded as nonskeletogenic, and so the embryonic origin of trunk denticle odontoblasts remains unresolved. Here, we use expression of FoxD3 to pinpoint the specification and emigration of trunk neural crest cells in embryos of a cartilaginous fish, the little skate (Leucoraja erinacea). Using cell lineage tracing, we further demonstrate that trunk neural crest cells do, in fact, give rise to odontoblasts of trunk dermal denticles. These findings expand the repertoire of vertebrate trunk neural crest cell fates during normal development, highlight the likely primitive skeletogenic potential of this cell population, and point to a neural crest origin of dentine throughout the ancestral vertebrate dermal skeleton.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1709-1718 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

The availability of naturally occurring and engineered mutations in mice which affect the neural crest makes the mouse embryo an important experimental system for studying neural crest cell differentiation. Here, we determine the normal developmental potential of neural crest cells by performing in situ cell lineage analysis in the mouse by microinjecting lysinated rhodamine dextran (LRD) into individual dorsal neural tube cells in the trunk. Labeled progeny derived from single cells were found in the neural tube, dorsal root ganglia, sympathoadrenal derivatives, presumptive Schwann cells and/or pigment cells. Most embryos contained labeled cells both in the neural tube and at least one neural crest derivative, and numerous clones contributed to multiple neural crest derivatives. The time of injection influenced the derivatives populated by the labeled cells. Injections at early stages of migration yielded labeled progeny in both dorsal and ventral neural crest derivatives, whereas those performed at later stages had labeled cells only in more dorsal neural crest derivatives, such as dorsal root ganglion and presumptive pigment cells. The results suggest that in the mouse embryo: (1) there is a common precursor for neural crest and neural tube cells; (2) some neural crest cells are multipotent; and (3) the timing of emigration influences the range of possible neural crest derivatives.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 809-816 ◽  
Author(s):  
G.N. Serbedzija ◽  
M. Bronner-Fraser ◽  
S.E. Fraser

To permit a more detailed analysis of neural crest cell migratory pathways in the chick embryo, neural crest cells were labelled with a nondeleterious membrane intercalating vital dye, DiI. All neural tube cells with endfeet in contact with the lumen, including premigratory neural crest cells, were labelled by pressure injecting a solution of DiI into the lumen of the neural tube. When assayed one to three days later, migrating neural crest cells, motor axons, and ventral root cells were the only cells types external to the neural tube labelled with DiI. During the neural crest cell migratory phase, distinctly labelled cells were found along: (1) a dorsolateral pathway, under the epidermis, as well adjacent to and intercalating through the dermamyotome; and (2) a ventral pathway, through the rostral portion of each sclerotome and around the dorsal aorta as described previously. In contrast to those cells migrating through the sclerotome, labelled cells on the dorsolateral pathway were not segmentally arranged along the rostrocaudal axis. DiI-labelled cells were observed in all truncal neural crest derivatives, including subepidermal presumptive pigment cells, dorsal root ganglia, and sympathetic ganglia. By varying the stage at which the injection was performed, neural crest cell emigration at the level of the wing bud was shown to occur from stage 13 through stage 22. In addition, neural crest cells were found to populate their derivatives in a ventral-to-dorsal order, with the latest emigrating cells migrating exclusively along the dorsolateral pathway.


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 97-118
Author(s):  
C. A. Erickson ◽  
J. A. Weston

The cellular morphology and migratory pathways of the trunk neural crest are described in normal mouse embryos, and in embryos homozygous for Patch in which neural crest derivatives develop abnormally. Trunk neural crest cells initially appear in 8½-day embryos as a unique cell population on the dorsal neural tube surface and are relatively rounded. Once they begin to migrate the cells flatten and orient somewhat tangentially to the neural tube, and advance ventrad between the somites and neural tube. At the onset of migration neural crest cells extend lamellipodia onto the surface of the tube while detaching their trailing processes from the lumenal surface. The basal lamina on the dorsal neural tube is discontinuous when cell migration begins in this region. As development proceeds, the basal lamina gradually becomes continuous from a lateral to dorsal direction and neural crest emigration is progressively confined to the narrowing region of discontinuous basal lamina. Cell separation from the neural tube ceases concomitant with completion of a continuous basement membrane. Preliminary observations of the mutant embryos reveal that abnormal extracellular spaces appear and patterns of crest migration are subsequently altered. We conclude that the extracellular matrix, extracellular spaces and basement membranes may delimit crest migration in the mouse.


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document