Developmentally regulated expression of alpha 6 integrin in avian embryos

Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 197-211 ◽  
Author(s):  
M. Bronner-Fraser ◽  
M. Artinger ◽  
J. Muschler ◽  
A.F. Horwitz

The distribution pattern of the avian alpha 6 integrin subunit was examined during early stages of development. The results show that this subunit is prevalent in cells of the developing nervous system and muscle. alpha 6 is first observed on neuroepithelial cells of the cranial neural plate and trunk neural tube. With time, immunoreactivity becomes prominent near the lumen and ventrolateral portions of the neural tube, co-distributing with neurons and axons, particularly notable on commissural neurons. The alpha 6 expression pattern is dynamic in the neural tube, with immunoreactivity peaking by embryonic day 6 (stage 30) and decreasing thereafter. The ventral roots and retina exhibit high levels of immunoreactivity throughout development. In the peripheral nervous system, alpha 6 immunoreactivity first appears on a subpopulation of sympathoadrenal cells around the dorsal aorta and later in the dorsal root ganglia shortly after gangliogenesis. Immunoreactivity appears on prospective myotomal cells as the somites delaminate into the dermomyotome and sclerotome, remaining prominent on myoblasts and differentiated muscle at all stages. The mesonephros also has intense immunoreactivity. In the periphery, alpha 6 immunoreactive regions often in proximity to laminin, which is thought to be the ligand of alpha 6 beta 1 integrin.

1991 ◽  
Vol 16 ◽  
pp. 78
Author(s):  
Akio Wanaka ◽  
Hidemasa Kato ◽  
Masaya Tohyama

Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 109-119 ◽  
Author(s):  
M. Maden ◽  
D. E. Ong ◽  
D. Summerbell ◽  
F. Chytil

We summarise existing data and describe new information on the levels and distribution of cellular retinoic acid-binding protein (CRABP) and cellular retinolbinding protein (CRBP) in the regenerating axolotl limb, the developing chick limb bud and the nervous system of the chick embryo in the light of the known morphogenetic effects of retinoids on these systems. In the regenerating limb, levels of CRABP rise 3- to 4-fold during regeneration, peaking at the time when retinoic acid (RA) is most effective at causing pattern duplications. The levels of CRBP are low. The potency of various retinoids in causing pattern respecification correlates well with the ability of these compounds to bind to CRABP. In the chick limb bud, the levels of CRABP are high and the levels of CRBP are low. Again the binding of various retinoids to CRABP correlates well with their ability to cause pattern duplications. By immunocytochemistry, we show that CRABP is present at high levels in the progress zone of the limb bud and is distributed across the anteroposterior axis in a gradient with the high point at the anterior margin. In the chick embryo, CRABP levels are high and CRBP levels are low. By immunocytochemistry, CRABP is localised primarily to the developing nervous system, labelling cells and axons in the mantle layer of the neural tube. These become the neurons of the commissural system. Also sensory axons label intensely with CRABP whereas motor axons do not and in the mixed nerves at the brachial plexus sensory and motor components can be distinguished on this basis. In the neural tube, CRBP only stains the ventral floor plate. Since the ventral floor plate may be a source of chemoattractant for commissural axons, we suggest on the basis of these staining patterns that RA may fulfill this role and thus be involved morphogenetically in the developing nervous system.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3025-3036 ◽  
Author(s):  
J. Fontaine-Perus ◽  
P. Halgand ◽  
Y. Cheraud ◽  
T. Rouaud ◽  
M.E. Velasco ◽  
...  

Chimeras were prepared by transplanting fragments of neural primordium from 8- to 8.5- and 9-day postcoital mouse embryos into 1.5- and 2-day-old chick embryos at different axial levels. Mouse neuroepithelial cells differentiated in ovo and organized to form the different cellular compartments normally constituting the central nervous system.The graft also entered into the development of the peripheral nervous system through migration of neural crest cells associated with mouse neuroepithelium. Depending on the graft level, mouse crest cells participated in the formation of various derivatives such as head components, sensory ganglia, orthosympathetic ganglionic chain, nerves and neuroendocrine glands. Tenascin knockout mice, which express lacZ instead of tenascin and show no tenascin production (Saga, Y., Yagi, J., Ikawa, Y., Sakakura, T. and Aizawa, S. (1992) Genes and Development 6, 1821–1838), were specifically used to label Schwann cells lining nerves derived from the implant. Although our experiments do not consider how mouse neural tube can participate in the mechanism required to maintain myogenesis in the host somites, they show that the grafted neural tube behaves in the same manner as the chick host neural tube. Together with our previous results on somite development (Fontaine-Perus, J., Jarno, V., Fournier Le Ray, C., Li, Z. and Paulin, D. (1995) Development 121, 1705–1718), this study shows that chick embryo constitutes a privileged environment, facilitating access to the developmental potentials of normal or defective mammalian cells. It allows the study of the histogenesis and precise timing of a known structure, as well as the implication of a given gene at all equivalent mammalian embryonic stages.


2000 ◽  
Vol 12 (6) ◽  
pp. 1857-1866 ◽  
Author(s):  
Marc Gleichmann ◽  
Clemens Gillen ◽  
Margarete Czardybon ◽  
Frank Bosse ◽  
Regine Greiner-Petter ◽  
...  

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 943-956 ◽  
Author(s):  
Y. Kinoshita ◽  
C. Kinoshita ◽  
J.G. Heuer ◽  
M. Bothwell

Fibroblast growth factors have been increasingly assigned mitogenic and trophic roles in embryonic and postnatal development of the nervous system. Little is known, however, of their functional roles in early embryonic neural development at the neural tube stage. We have examined the effect of basic fibroblast growth factor (bFGF) on the adhesive behavior in culture of dissociated brachio-thoracic neural tube cells from 26- to 30-somite stage chick embryos. Cells plated on collagen-coated substratum at a low density attach to the substratum but show poor cell spreading. Addition of bFGF markedly promotes cell spreading, yielding an epithelial morphology. This effect becomes discernible 6–8 hours after cell plating with bFGF and is completed by 24 hours, with half-maximal and maximal effects attained at around 0.4 and 10 ng/ml, respectively. The number of cells remain largely constant up to 24 hours, and then cell survival and/or mitogenic effects of bFGF become apparent. The cell spreading effect is abolished by cycloheximide treatment, inhibited by the anti-beta 1-integrin antibody CSAT, and accompanied by about twofold increases in the expression of beta 1-integrin and vinculin, components of focal adhesion complexes. Cells cultured with bFGF for 24 hours exhibit enhanced cell attachment and cell spreading with little time lag following cell plating. In earlier embryonic stages, developmentally less mature cells depend much more on bFGF for their cell spreading and survival, while in later stages the cell spreading response to bFGF becomes undetectable as neural tube develops to spinal cord. The cell spreading effect of bFGF is realized on specific extracellular matrix proteins including laminin, fibronectin and collagen, but not on vitronectin, arg-gly-asp peptide (PepTite-2000), poly-L-ornithine or others. These results suggest that, in an early stage of neural tube development, bFGF is involved in the developmental regulation of adhesive interactions between neuroepithelial cells and the extracellular matrix, thereby controlling their proliferation, migration and differentiation.


2019 ◽  
Author(s):  
Yunlu Zhu ◽  
Samantha C. Crowley ◽  
Andrew J. Latimer ◽  
Gwendolyn M. Lewis ◽  
Rebecca Nash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document