Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter

Development ◽  
1993 ◽  
Vol 119 (3) ◽  
pp. 767-772 ◽  
Author(s):  
S. Small ◽  
D. N. Arnosti ◽  
M. Levine

The even-skipped (eve) promoter contains a series of enhancers that control the expression of different segmentation stripes in the Drosophila embryo. The stripe 3 enhancer is located 1.7 kb upstream of the stripe 2 enhancer. Here we demonstrate that these enhancers must be physically separated by a minimum distance for proper stripe expression. When they are directly coupled in either orientation, the enhancers generate abnormal patterns of expression in the early embryo. For example, the levels of stripe 2 expression are augmented and there is a posterior expansion of the pattern when the stripe 3 enhancer is positioned immediately upstream of the stripe 2 enhancer. Despite this spacing requirement, the order of the enhancers within the eve promoter can be reversed without affecting the normal expression pattern. These results suggest that spacing maintains the autonomous activities of the stripe enhancers and that interactions between enhancers can generate novel patterns of gene expression.

Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1341-1353 ◽  
Author(s):  
F Pelegri ◽  
R Lehmann

Abstract Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo.


2018 ◽  
Author(s):  
Clarissa Scholes ◽  
Kelly M. Biette ◽  
Timothy T. Harden ◽  
Angela H. DePace

SUMMARYTranscription of developmental genes is controlled by multiple enhancers. Frequently, more than one enhancer can activate transcription from the same promoter in the same cells. In these cases, how is regulatory information from multiple enhancers combined to determine the overall expression output of their shared promoter? To investigate this question, we quantified nascent transcription driven by a pair shadow enhancers, each individual of the pair, and their duplications in Drosophila embryos using live imaging. This set of constructs allows us to quantify the “computation” made by the pairs of enhancers: their combined output expression as a function of the expression that they drive separately. We show that the computation performed by these shadow enhancers and duplications varies across the expression pattern, implying that how their activities are combined depends on the transcriptional regulators bound to the enhancers in different parts of the embryo. Characterizing the computation made by multiple enhancers is a critical first step in developing conceptual and computational models of gene expression at the locus level, where multiple enhancers collaborate.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 611-621 ◽  
Author(s):  
R. Kraut ◽  
M. Levine

The gap genes play a key role in establishing pair-rule and homeotic stripes of gene expression in the Drosophila embryo. There is mounting evidence that overlapping gradients of gap gene expression are crucial for this process. Here we present evidence that the segmentation gene giant is a bona fide gap gene that is likely to act in concert with hunchback, Kruppel and knirps to initiate stripes of gene expression. We show that Kruppel and giant are expressed in complementary, non-overlapping sets of cells in the early embryo. These complementary patterns depend on mutually repressive interactions between the two genes. Ectopic expression of giant in early embryos results in the selective repression of Kruppel, and advanced-stage embryos show cuticular defects similar to those observed in Kruppel- mutants. This result and others suggest that the strongest regulatory interactions occur among those gap genes expressed in nonadjacent domains. We propose that the precisely balanced overlapping gradients of gap gene expression depend on these strong regulatory interactions, coupled with weak interactions between neighboring genes.


Author(s):  
William Theurkauf

Cell division in eucaryotes depends on coordinated changes in nuclear and cytoskeletal components. In Drosophila melanogaster embryos, the first 13 nuclear divisions occur without cytokinesis. During the final four divisions, nuclei divide in a uniform monolayer at the surface of the embryo. These surface divisions are accompanied by dramatic changes in cortical actin and microtubule structure (Karr and Alberts, 1986), and inhibitor studies indicate that these changes are essential to orderly mitosis (Zalokar and Erk, 1976). Because the early embryo is syncytial, fluorescent probes introduced by microinjection are incorporated in structures associated with all of the nuclei in the blastoderm. In addition, the nuclei divide synchronously every 10 to 20 min. These characteristics make the syncytial blastoderm embryo an excellent system for the analysis of mitotic reorganization of both nuclear and cytoskeletal elements. However, the Drosophila embryo is a large cell, and resolution of cytoskeletal filaments and nuclear structure is hampered by out-of focus signal.


Genetics ◽  
1983 ◽  
Vol 105 (3) ◽  
pp. 615-632 ◽  
Author(s):  
Pat Simpson

ABSTRACT Maternal-zygotic interactions involving the three genes dorsal (dl), twist (twi) and snail (sna) are described. The results suggest that all three are involved in the process by which the dorsoventral pattern of the Drosophila embryo is established. First, the lethal embryonic mutant phenotypes are rather similar. In homozygous twi or sna embryos invagination of the ventral presumptive mesodermal cells fails to occur, and the resulting embryos are devoid of internal organs. This is very similar to the dominant phenotype described for dl; in the case of dl, however, the effect is a maternal one dependent on the mutant genotype of the female. Second, a synergistic interaction has been found whereby dominant lethality of twi  - or sna-bearing zygotes is observed in embryos derived from heterozygous dl females at high temperature. The temperature sensitivity of this interaction permitted definition of a temperature-sensitive period which is probably that of dl. This was found to extend from approximately 12 hr prior to oviposition to 2— 3 hr of embryogenesis. A zygotic action for the dl gene in addition to the maternal effect was revealed by the finding that extra doses of dl  + in the zygotes can partially rescue the dominant lethality of heterozygous twi embryos derived from heterozygous dl females. Two possible interpretations of the synergism are considered: (1) twi and sna are activated in the embryos as a result of positional signals placed in the egg as a consequence of the functioning of the dl gene during oogenesis and, thus, play a role in embryonic determination. (2) The gene products of dl  + and twi  + (or sna  +) combine to produce a functional molecule that is involved in the specification of dorsoventral pattern in the early embryo.


Sign in / Sign up

Export Citation Format

Share Document