Axogenesis in the embryonic brain of the grasshopper Schistocerca gregaria: an identified cell analysis of early brain development

Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 75-86 ◽  
Author(s):  
G. Boyan ◽  
S. Therianos ◽  
J.L. Williams ◽  
H. Reichert

Axogenesis in the embryonic brain was studied at the single cell level in the grasshopper Schistocerca gregaria. A small set of individually identifiable pioneer neurons establishes a primary axon scaffold during early embryogenesis. At the beginning of scaffold formation, pioneering axons navigate along and between glial borders that surround clusters of proliferating neuroblasts. In each brain hemisphere, an axonal outgrowth cascade involving a series of pioneer neurons establishes a pathway from the optic ganglia to the brain midline. At the midline the primary preoral commissural interconnection in the embryonic brain is pioneered by a pair of midline-derived pioneer neurons. A second preoral commissural connection is pioneered by two pairs of pars intercerebralis pioneer neurons. Descending tracts are pioneered by the progeny of identified neuroblasts in the pars intercerebralis, deutocerebrum and tritocerebrum; the postoral tritocerebral commissure is pioneered by a pair of tritocerebral neurons. All of the pioneering brain neurons express the cell adhesion molecule fasciclin I during initial axon outgrowth and fasciculation. Once established, the primary axon scaffold of the brain is used for fasciculation by subsequently differentiating neurons and, by the 40% stage of embryogenesis, axonal projections that characterize the mature brain become evident. The single cell analysis of grasshopper brain development presented here sets the stage for manipulative cell biological experiments and provides the basis for comparative molecular genetic studies of embryonic brain development in Drosophila.

2020 ◽  
Author(s):  
Luipa Khandker ◽  
Marisa A. Jeffries ◽  
Yun-Juan Chang ◽  
Marie L. Mather ◽  
Jennifer N. Bourne ◽  
...  

AbstractBrain and spinal cord oligodendroglia have distinct functional characteristics, and cell autonomous loss of individual genes can result in different regional phenotypes. However, sequencing studies to date have not revealed distinctions between brain and spinal cord oligodendroglia. Using single-cell analysis of oligodendroglia during myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglial-specific loss of mTOR compromises cholesterol biosynthesis in both the brain and spinal cord. Importantly, mTOR loss has a greater impact on cholesterol biosynthesis in spinal cord oligodendroglia that corresponds with more pronounced developmental deficits. However, loss of mTOR in brain oligodendroglia ultimately results in oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain.


2017 ◽  
Vol 43 (suppl_1) ◽  
pp. S61-S61
Author(s):  
Steven McCarroll ◽  
Evan Macosko ◽  
Arpiar Saunders ◽  
Melissa Goldman ◽  
Laura Bortolin ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6614
Author(s):  
Martin A. Estermann ◽  
Craig A. Smith

The gonads are unique among the body’s organs in having a developmental choice: testis or ovary formation. Gonadal sex differentiation involves common progenitor cells that form either Sertoli and Leydig cells in the testis or granulosa and thecal cells in the ovary. Single-cell analysis is now shedding new light on how these cell lineages are specified and how they interact with the germline. Such studies are also providing new information on gonadal maturation, ageing and the somatic-germ cell niche. Furthermore, they have the potential to improve our understanding and diagnosis of Disorders/Differences of Sex Development (DSDs). DSDs occur when chromosomal, gonadal or anatomical sex are atypical. Despite major advances in recent years, most cases of DSD still cannot be explained at the molecular level. This presents a major pediatric concern. The emergence of single-cell genomics and transcriptomics now presents a novel avenue for DSD analysis, for both diagnosis and for understanding the molecular genetic etiology. Such -omics datasets have the potential to enhance our understanding of the cellular origins and pathogenesis of DSDs, as well as infertility and gonadal diseases such as cancer.


Author(s):  
Alexander Lind ◽  
Falastin Salami ◽  
Anne‐Marie Landtblom ◽  
Lars Palm ◽  
Åke Lernmark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document