metastatic microenvironment
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 44 (1) ◽  
pp. 233-241
Author(s):  
Takuma Hayashi ◽  
Kenji Sano ◽  
Ikuo Konishi

According to a report from the World Health Organization (WHO), the mortality and disease severity induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are significantly higher in cancer patients than those of individuals with no known condition. Common and cancer-specific risk factors might be involved in the mortality and severity rates observed in the coronavirus disease 2019 (COVID-19). Similarly, various factors might contribute to the aggravation of COVID-19 in patients with cancer. However, the factors involved in the aggravation of COVID-19 in cancer patients have not been fully investigated so far. The formation of metastases in other organs is common in cancer patients. Therefore, the present study investigated the association between lung metastatic lesion formation and SARS-CoV-2 infectivity. In the pulmonary micrometastatic niche of patients with ovarian cancer, alveolar epithelial stem-like cells were found adjacent to ovarian cancer. Moreover, angiotensin-converting enzyme 2, a host-side receptor for SARS-CoV-2, was expressed in these alveolar epithelial stem-like cells. Furthermore, the spike glycoprotein receptor-binding domain (RBD) of SARS-CoV-2 was bound to alveolar epithelial stem-like cells. Altogether, these data suggested that patients with cancer and pulmonary micrometastases are more susceptible to SARS-CoV-2. The prevention of de novo niche formation in metastatic diseases might constitute a new strategy for the clinical treatment of COVID-19 for patients with cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Li ◽  
Lidong Sun ◽  
Li Liu ◽  
Qingsen Ran ◽  
Xinke Du ◽  
...  

Metastasis is a multistep process that depends on the interactions between tumor cells and their microenvironment. Macrophages in the tumor microenvironment show high polarization plasticity and have a paradoxical role in cancer progression. Hijacked by tumor-promoting signals, the polarization status of macrophages was pathologically disturbed and believed to be the decisive mechanism forcing the progression of metastasis. In this study, we explored the immunological activity of Chamaejasmin B (ICJ), a previously proved inhibitor for metastasis, in macrophages from metastatic microenvironment. When intravenously injected of 4T1 cells in mice, ICJ significantly inhibited its metastatic outgrowth. Taking tumor cell and macrophage as a functional integrity, an adoptive transfer model was established in vitro to exclude the direct effect of ICJ on tumor. The findings suggest a dual influence of ICJ on both tumors and macrophages, as indicated by the rebalance of macrophage polarization and suppression of clonogenic potential in tumor cells. Mechanistically, ICJ redirected M2-dominant polarization of tumor-associated macrophage in an IL-4-mTOR-dependent manner. Collectively, our study revealed that ICJ rebalanced macrophage polarization in malignant microenvironment and showed promising effect in suppressing metastatic outgrowth in breast cancer model.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qian Jin ◽  
He Yang ◽  
Zhao Jing ◽  
Wu Hong-hua ◽  
Song Ben-jing ◽  
...  

Abstract Background Bone metastasis of colorectal cancer (CRC) often indicates a poor prognosis. Osteolysis can be observed in metastatic sites, implying an aberrant activation of osteoclasts. However, how osteoclastogenesis is regulated in metastatic microenvironment caused by colorectal cancer is still unclear. Methods In this study, mice bone metastatic model of CRC was established through injection of MC-38 or CT-26 cells. BrdU assays showed primary CD115 ( +) osteoclast precursors (OCPs) proliferated at the first 2 weeks. Transcriptomic profiling was performed to identify differentially expressing genes and pathways in OCPs indirectly co-cultured with CRC cells Results The expression of IL4Rα was found to be significantly upregulated in OCPs stimulated by tumor conditioned medium (CM). Further investigation indicated that IL-4 signaling regulated proliferation of OPCs through interacting with type I IL4 receptor, and neutrophils were the main source of IL-4 in bone marrow. The proliferation of OCPs can be inhibited in IL4 deficiency mice. In addition, ERK pathway was activated by IL4/IL4R signaling. Ravoxertinib, an ERK antagonists, could significantly prevent bone destruction through inhibiting the proliferation of OCPs. Conclusion Our study indicates the essential role of IL4/IL4R signaling for the proliferation of OCPs in early metastasis of CRC predominantly through activating ERK pathway, which remarkedly impacts the number of osteoclasts in later stage and leads to osteolytic lesions. Moreover, Ravoxertinib could be a new therapeutical target for bone metastasis of CRC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A220-A220
Author(s):  
Sabina Kaczanowska ◽  
Daniel Beury ◽  
Haiying Qin ◽  
Rosandra Kaplan

BackgroundImmune suppression is a major hurdle in cancer immunotherapy for solid tumors. Innate myeloid cells are key regulators of the immune system and can dampen the antitumor response against cancer. We have identified that bone marrow-derived myeloid cells play an immunosuppressive role in the metastatic microenvironment, limiting immune surveillance and facilitating the growth of tumor cells. We hypothesized that targeting the myeloid-mediated immune suppression program in the metastatic and primary tumor microenvironment could facilitate antitumor immune activation and be a successful immunotherapeutic approach.MethodsTo take advantage of the unique capability of myeloid cells to home to and infiltrate tumor and metastatic sites, we designed an immunotherapeutic approach in which we generate genetically engineered myeloid cells (GEMys) as a platform to locally deliver modulatory factors into the tumor and metastatic microenvironment.ResultsMice treated with IL-12-secreting GEMys (IL12-GEMys) exhibited a robust IFNγ response associated with increased expression of antigen processing and presentation machinery as well as numbers of T and NK cells expressing markers associated with activation and cytotoxicity. These microenvironmental changes were associated with reduced metastasis, delayed tumor growth, and increased survival. When combined with chemotherapy pre-conditioning, IL12-GEMys cured mice of established tumors and generated long-lived T cell memory, as these mice were immune to subsequent tumor challenge. We are currently working on translating these exciting findings into the human setting.ConclusionsThis work demonstrates that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer. This approach holds promise to limit metastatic progression in patients with high risk and advanced cancers.ReferencesKaczanowska S, Beury DW, Gopalan V, Tycko AK, Qin H, Clements ME, Drake J, Nwanze C, Murgai M, Rae Z, Ju W, Alexander KA, Kline J, Contreras CF, Wessel KM, Patel S, Hannenhalli S, Kelly M, Kaplan RN. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 2021;184:1–20.


2021 ◽  
Author(s):  
Tommaso Virgilio ◽  
Joy Bordini ◽  
Giulio Sartori ◽  
Irene Latino ◽  
Daniel Molina-Romero ◽  
...  

During melanoma metastasization, tumor cells originated in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN) in a process that facilitates their spread across the body. Here, we characterized the innate inflammatory responses to melanoma metastasis in the sLN. For this purpose, we confirmed the migration of fluorescent metastatic melanoma cells to the sLN and we characterized the inflammatory response in the metastatic microenvironment. We found that macrophages located in the subcapsular sinus (SSM), produce pro-tumoral IL-1α after recognition of tumor antigens. Moreover, we confirmed that the administration of an anti-IL-1α depleting antibody reduced metastasis. Conversely, the administration of recombinant IL-1α accelerated the lymphatic spreading of the tumor. Additionally, the elimination of the macrophages significantly reduced the progression of the metastatic spread. To understand the mechanism of action of IL-1α in the context of the lymph node microenvironment, we applied single-cell RNA sequencing to dissected metastases obtained from animals treated with an anti-IL-1α blocking antibody. Amongst the different pathways affected, we identified STAT3 as one of the main targets of IL-1α signaling in metastatic cells. Moreover, we found that the anti-IL-1α anti-tumoral effect was not mediated by lymphocytes, as IL-1R1 KO mice did not show any improvement in metastasis growth. Finally, we found a synergistic anti-metastatic effect of the combination of IL-1α blocking and the STAT3 inhibitor (STAT3i) stattic. In summary, we described a new mechanism by which SSM support melanoma metastasis, highlighting a new target for immunotherapy.


Author(s):  
Qi Dong ◽  
Xue Liu ◽  
Ke Cheng ◽  
Jiahao Sheng ◽  
Jing Kong ◽  
...  

Primary tumors selectively modify the microenvironment of distant organs such as the lung, liver, brain, bone marrow, and lymph nodes to facilitate metastasis. This supportive metastatic microenvironment in distant organs was termed the pre-metastatic niche (PMN) that is characterized by increased vascular permeability, extracellular matrix remodeling, bone marrow-derived cells recruitment, angiogenesis, and immunosuppression. Extracellular vesicles (EVs) are a group of cell-derived membranous structures that carry various functional molecules. EVs play a critical role in PMN formation by delivering their cargos to recipient cells in target organs. We provide an overview of the characteristics of the PMN in different organs promoted by cancer EVs and the underlying mechanisms in this review.


2021 ◽  
Author(s):  
Jungang Dong ◽  
Zhongbo Zhu ◽  
Guoning Cui ◽  
Zhixuan Zhang ◽  
Juan Yue ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in peritoneal metastasis of Gastric cancer (GC). Tumor exosomes can mediate tumor directed metastasis, and TGF-β1 is an important factor in inducing tumor Epithelial mesenchymal transition. However, it is not clear whether GC derived exosomes can induce peritoneal mesothelial cells through the TGF-β1/ Smads pathway and the effect of injured peritoneal mesothelial cells on the biological characteristics of GC cells. In this study, we demonstrated that GC-derived exosomes can activate the TGF-β1/Smads pathway in peritoneal mesothelial cells and induce the corresponding EMT process, and that the injured peritoneal mesothelial cells can improve the migration and adhesion of GC cells. Taken together, these data further support the critical role of exosomes in the remodeling of the pre-metastatic microenvironment.


2021 ◽  
Author(s):  
Beatrice Malacrida ◽  
Robin Delaine-Smith ◽  
Sam Nichols ◽  
Eleni Maniati ◽  
Roanne L. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document