Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene

Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3561-3572 ◽  
Author(s):  
J. Royet ◽  
R. Finkelstein

Significant progress has been made towards understanding how pattern formation occurs in the imaginal discs that give rise to the limbs of Drosophila melanogaster. Here, we examine the process of regional specification that occurs in the eye-antennal discs, which form the head of the adult fruitfly. We demonstrate genetically that there is a graded requirement for the activity of the orthodenticle homeobox gene in forming specific structures of the developing head. Consistent with this result, we show that OTD protein is expressed in a graded fashion across the disc primordia of these structures and that different threshold levels of OTD are required for the formation of specific subdomains of the head. Finally, we provide evidence suggesting that otd acts through the segment polarity gene engrailed to specify medial head development.

Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1029-1043 ◽  
Author(s):  
M. Peifer ◽  
C. Rauskolb ◽  
M. Williams ◽  
B. Riggleman ◽  
E. Wieschaus

The segment polarity genes of Drosophila were initially defined as genes required for pattern formation within each embryonic segment. Some of these genes also function to establish the pattern of the adult cuticle. We have examined the role of the armadillo (arm) gene in this latter process. We confirmed and extended earlier findings that arm and the segment polarity gene wingless are very similar in their effects on embryonic development. We next discuss the role of arm in pattern formation in the imaginal discs, as determined by using a pupal lethal allele, by analyzing clones of arm mutant tissue in imaginal discs, and by using a transposon carrying arm to produce adults with a reduced level of arm. Together, these experiments established that arm is required for the development of all imaginal discs. The requirement for arm varies along the dorsal-ventral and proximal-distal axes. Cells that require the highest levels of arm are those that express the wingless gene. Further, animals with reduced arm levels have phenotypes that resemble those of weak alleles of wingless. We present a description of the patterns of arm protein accumulation in imaginal discs. Finally, we discuss the implications of these results for the role of arm and wingless in pattern formation.


1993 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
P THEROND ◽  
D BUSSON ◽  
E GUILLEMET ◽  
B LIMBOURGBOUCHON ◽  
T PREAT ◽  
...  

1987 ◽  
Vol 7 (9) ◽  
pp. 3244-3251
Author(s):  
M C Mariol ◽  
T Preat ◽  
B Limbourg-Bouchon

Using the chromosomal walk technique, we isolated recombinant lambda bacteriophage and cosmid clones spanning 250 kilobases (kb) in the 17C-D region of the X chromosome of Drosophila melanogaster. This region was known to contain the segment polarity gene fused. Several lethal fused mutations were used to define more precisely the localization of this locus. Southern analysis of genomic DNA revealed that all of them were relatively large deficiencies, the smallest one being 40 kb long. None of the 12 viable fused mutations examined possessed detectable alterations. We isolated a cosmid containing an insertion covering the entire smallest fused deletion (40 kb). We injected this DNA into fused mutant embryos and obtained a partial phenotypic rescue of the embryonic pattern, indicating that this region contained all the sequences necessary for the embryonic expression of the fu+ gene. Within this DNA, a subclone of 14 kb codes for poly(A)+ RNAs of 3.5, 2.5, 1.6, and 1.3 kb detected in embryos from various developmental stages as well as in adults. All these transcripts showed the same developmental expression. This transcribed region was injected into fused mutant embryos, and once again we obtained a partial rescue of the embryonic phenotype, confirming that this region contained at least the fused gene.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 237-247 ◽  
Author(s):  
J. Mohler ◽  
J.W. Mahaffey ◽  
E. Deutsch ◽  
K. Vani

Mutational analysis of cap'n'collar (cnc), a bZIP transcription factor closely related to the mammalian erythroid factor NF-E2 (p45), indicates that it acts as a segment-specific selector gene controlling the identity of two cephalic segments. In the mandibular segment, cnc has a classical homeotic effect: mandibular structures are missing in cnc mutant larvae and replaced with duplicate maxillary structures. We propose that cnc functions in combination with the homeotic gene Deformed to specify mandibular development. Labral structures are also missing in cnc mutant larvae, where a distinct labral primordia is not properly maintained in the developing foregut, as observed by the failure to maintain and elaborate patterns of labral-specific segment polarity gene expression. Instead, the labral primordium fuses with the esophageal primordium to contribute to formation of the esophagus. The role of cnc in labral development is reciprocal to the role of homeotic gene forkhead, which has an identical function in the maintenance of the esophageal primordium. This role of homeotic selector genes for the segment-specific maintenance of segment polarity gene expression is a unique feature of segmentation in the preoral head region of Drosophila.


Genetics ◽  
1992 ◽  
Vol 132 (3) ◽  
pp. 725-736 ◽  
Author(s):  
T Préat

Abstract fused (fu) is a maternal effect segment polarity gene of Drosophila melanogaster. In addition, fu females have tumorous ovaries. Two ethyl methanesulfonate mutageneses were carried out in order to isolate suppressors of the fu phenotype. A new gene, Suppressor of fused (Su(fu)), was identified. It is located in the 87C8 region of the third chromosome. Su(fu) displays a maternal effect and is also expressed later in development. Although Su(fu)LP is a complete loss-of-function mutation, it is homozygous viable and has no phenotype by itself. Su(fu) fully suppresses the embryonic and adult phenotypes of fu mutants. Su(fu) mutations are semidominant and a Su(fu)+ duplication has an opposite effect, enhancing the fused phenotype. It is proposed therefore that the Su(fu)+ product is involved in the same developmental step as the Fu+ kinase. Thus, a new gene interacting with the segment polarity pathway was identified using an indirect approach.


Development ◽  
1996 ◽  
Vol 122 (3) ◽  
pp. 795-804 ◽  
Author(s):  
M. Grbic ◽  
L.M. Nagy ◽  
S.B. Carroll ◽  
M. Strand

THe polyembryonic wasp Copidosoma floridanum produces up to 2000 individuals from a single egg. During the production of individual embryos the original anteroposterior axis of the egg is lost and axial patterning must subsequently be reestablished within each embryo. The mechanism by which this occurs is unknown. In most insects, egg polarity is established during oogenesis and early development takes place in a syncytium. In Drosophila melanogaster, the syncytium is considered essential for establishing the morphogenetic gradients that initiate segmental patterning. However, we found that development of C. floridanum occurs almost exclusively in a cellularized environment. To determine whether the D. melanogaster patterning cascade is conserved in the absence of a syncytium, we analyzed the expression of Even-skipped, Engrailed and Ultrabithorax/Abdominal-A during polyembryonic development. Here we show that in spite of the absence of a syncytium, the elements of the D. melanogaster segmentation hierarchy are conserved. The segment-polarity gene Engrailed and the homeotic genes Ultrabithorax/Abdominal-A are expressed in a conserved pattern relative to D. melanogaster. However, we detect an alteration in the expression of the Even-skipped antigen. Even-skipped is initially expressed in segmentally reiterated stripes and not in the pair-rule pattern as it is in D. melanogaster. We also observe that the expression of these regulatory proteins does not occur during the early proliferative phases of polyembryony. Our results indicate that a syncytium is not required for segmental patterning in this insect.


1987 ◽  
Vol 7 (9) ◽  
pp. 3244-3251 ◽  
Author(s):  
M C Mariol ◽  
T Preat ◽  
B Limbourg-Bouchon

Using the chromosomal walk technique, we isolated recombinant lambda bacteriophage and cosmid clones spanning 250 kilobases (kb) in the 17C-D region of the X chromosome of Drosophila melanogaster. This region was known to contain the segment polarity gene fused. Several lethal fused mutations were used to define more precisely the localization of this locus. Southern analysis of genomic DNA revealed that all of them were relatively large deficiencies, the smallest one being 40 kb long. None of the 12 viable fused mutations examined possessed detectable alterations. We isolated a cosmid containing an insertion covering the entire smallest fused deletion (40 kb). We injected this DNA into fused mutant embryos and obtained a partial phenotypic rescue of the embryonic pattern, indicating that this region contained all the sequences necessary for the embryonic expression of the fu+ gene. Within this DNA, a subclone of 14 kb codes for poly(A)+ RNAs of 3.5, 2.5, 1.6, and 1.3 kb detected in embryos from various developmental stages as well as in adults. All these transcripts showed the same developmental expression. This transcribed region was injected into fused mutant embryos, and once again we obtained a partial rescue of the embryonic phenotype, confirming that this region contained at least the fused gene.


1998 ◽  
Vol 258 (1-2) ◽  
pp. 45-52 ◽  
Author(s):  
D. Dooijes ◽  
M. van Beest ◽  
M. van de Wetering ◽  
G. Boulanger ◽  
T. Jones ◽  
...  

Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 417-429 ◽  
Author(s):  
B. Limbourg-Bouchon ◽  
D. Busson ◽  
C. Lamour-Isnard

Fused (fu) is a segment polarity gene whose product is maternally required in the posterior part of each segment. To define further the role of fused and determine how it interacts with other segmentation genes, we examined the phenotypes obtained by combining fused with mutations of pair rule, homeotic and other segment polarity loci. When it was possible, we also looked at the distribution of corresponding proteins in fused mutant embryos. We observed that fused-naked (fu;nkd) double mutant embryos display a phenotypic suppression of simple mutant phenotypes: both naked cuticle and denticle belts, which would normally have been deleted by one of the two mutants alone, were restored. In fused mutant embryos, engrailed (en) and wingless (wg) expression was normal until germ band extension, but partially and completely disappeared respectively during germ band retraction. In the fu;nkd double mutant embryo, en was expressed as in nkd mutant at germ band extension, but later this expression was restricted and became normal at germ band retraction. On the contrary, wg expression disappeared as in fu simple mutant embryos. We conclude that the requirements for fused, naked and wingless activities for normal segmental patterning are not absolute, and propose mechanisms by which these genes interact to specify anterior and posterior cell fates.


Sign in / Sign up

Export Citation Format

Share Document