fused gene
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Mireia Perez Verdaguer ◽  
Tian Zhang ◽  
Joao A Paulo ◽  
Callen Wallace ◽  
Simon C. Watkins ◽  
...  

Ligand binding to the EGF receptor (EGFR) triggers multiple signal transduction processes and promotes endocytosis of the receptor. The mechanisms of EGFR endocytosis and its crosstalk with signaling are poorly understood. Here, we combined peroxidase-catalyzed proximity labeling, isobaric peptide tagging and quantitative mass-spectrometry to define the dynamics of the proximity proteome of ligand-activated EGFR. Using this approach, we identified a network of signaling proteins, which remain associated with the receptor during its internalization and trafficking through the endosomal system. We showed that Trk-fused gene (TFG), a protein known to function at the endoplasmic reticulum exit sites, was enriched in the proximity proteome of EGFR in early/sorting endosomes and localized in these endosomes, and demonstrated that TFG regulates endosomal sorting of EGFR. This study provides a comprehensive resource of time-dependent nanoscale environment of EGFR, thus opening avenues to discovering new regulatory mechanisms of signaling and intracellular trafficking of receptor tyrosine kinases.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009111
Author(s):  
Kashif Aziz Khan ◽  
Alexandre Marineau ◽  
Priscilla Doyon ◽  
Mariana Acevedo ◽  
Étienne Durette ◽  
...  

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriele Colozza ◽  
Yasaman Jami-Alahmadi ◽  
Alyssa Dsouza ◽  
Nydia Tejeda-Muñoz ◽  
Lauren V. Albrecht ◽  
...  

AbstractThe canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.


2020 ◽  
Author(s):  
Gabriele Colozza ◽  
Yasaman Jami-Alahmadi ◽  
Alyssa Dsouza ◽  
Nydia Tejeda-Muñoz ◽  
Lauren V. Albrecht ◽  
...  

AbstractThe canonical Wnt signaling pathway serves as a hub connecting diverse cellular physiological processes, such as β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many components of the ESCRT (Endocytic Sorting Components Required for Transport) machinery interacted with Lrp6 within 5 minutes of Wnt3a treatment. This supports the proposal of a central role of multivesicular endosomes in canonical Wnt signaling. Interestingly, proteomic analyses identified the Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, as being strongly enriched in the proximity of Lrp6. We provide evidence that TFG specifically co-localized with MVBs after Wnt stimulation. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.SignificanceWnt/β-catenin signaling is a conserved pathway involved in cell differentiation and in the regulation of many other processes, including cell growth and proliferation, macropinocytosis, and cell metabolism. Endocytosis is required to regulate Wnt signaling, but the precise factors at play are still elusive. Here, we describe a biotin-dependent proximity labeling approach using ascorbate peroxidase-tagged Lrp6, a Wnt co-receptor. Proteomic analysis of biotinylated-enriched targets identified numerous multivesicular endosome proteins that were recruited to the receptor shortly after addition of Wnt protein. Additionally, we identified the protein TFG as one of the strongest interactors with Lrp6. TFG co-localized with Wnt-induced multivesicular endosomes. Xenopus embryo assays revealed that TFG is required in vivo for canonical Wnt signaling.


2020 ◽  
Vol 30 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Gian Maria Fabrizi ◽  
Helle Høyer ◽  
Federica Taioli ◽  
Tiziana Cavallaro ◽  
Hilde Tveitan Hilmarsen ◽  
...  

2019 ◽  
Author(s):  
Markus Grohmann ◽  
Tobit Steinmetz ◽  
Hans-Martin Jäck ◽  
Dirk Mielenz

AbstractB cell receptor (BCR) mediated activation of nuclear factor κB (NF-κB) is key to humoral immunity. CARMA1 (CARD11) is essential for BCR mediated NF-κB activation by interacting with Bcl10 and MALT1. Besides these two main players, few interaction partners of the CARMA1 complex are known. Here we identified new interaction partners of CARMA1. We generated two rabbit antisera against mouse CARMA1 to immunopurify endogenous CARMA1 from lysates of mouse B cells. Nik-binding protein (NIBP), Ras-GAP SH3 binding protein 2 (G3BP1) and Trk-fused gene (Tfg) were identified by peptide mass fingerprinting in immunopurified CARMA1 complexes. The interaction of Tfg and CARMA1 was confirmed by co-immunoprecipitation and Blue native polyacrylamide gel electrophoresis using the anti CARMA1 and newly generated anti Tfg antibodies. This analysis revealed that CARMA1 formed complexes of 600-1000 kDa. Additionally, Tfg was found in complexes of 500-600 kDa which increased in size to ∼740 kDa upon overexpresssion.


2019 ◽  
Vol 11 (9) ◽  
pp. 2678-2690 ◽  
Author(s):  
Ann M McCartney ◽  
Edel M Hyland ◽  
Paul Cormican ◽  
Raymond J Moran ◽  
Andrew E Webb ◽  
...  

Abstract Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
So-Ra Choi ◽  
Yul-Lye Hwang ◽  
Soo Jung Kim ◽  
Kyung-Cheol Sohn ◽  
Chong Won Choi ◽  
...  

2018 ◽  
Vol 4 (6) ◽  
pp. e287 ◽  
Author(s):  
Nicolas N. Madigan ◽  
Jennifer A. Tracy ◽  
William J. Litchy ◽  
Zhiyv Niu ◽  
Chunhua Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document