Hair matrix germinative epidermal cells confer follicle-inducing capabilities on dermal sheath and high passage papilla cells

Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3085-3094
Author(s):  
A.J. Reynolds ◽  
C.A. Jahoda

Low passage cultured dermal papilla cells from adult rats stimulate complete hair follicle neogenesis when re-implanted into heterotypic skin. In contrast, cultured sheath cells are non-inductive despite sharing other behavioural characteristics (a common lineage and in situ proximity) with papilla cells. However, since sheath cells can behave inductively in amputated follicles after regenerating the papilla, this poses the question of what influences the sheath to papilla cell transition? During reciprocal tissue interactions specific epidermal cues are crucial to skin appendage development, and while in vivo assays to date have focussed on dermal interactive influence, our aim was to investigate epidermal potential. We have previously observed that hair follicle epidermal cells display exceptional interactive behaviour when combined with follicle dermal cells in vitro. Thus in the present study, hair follicle germinative, outer root sheath or skin basal epidermal cells were separately combined with each of three non-inductive dermal cell types (high passage papilla, low passage sheath or fibroblast) and then implanted into small ear skin wounds. The sheath/germinative and papilla/germinative cell implants repeatedly induced giant vibrissa-type follicles and fibres. In complete contrast, any single cell type and all other forms of recombination were consistently non-inductive. Hence, the adult germinative epidermal cells enable non-inductive adult dermal cells to stimulate hair follicle neogenesis, effectively, by altering their ‘status’, causing the sheath cells to ‘specialise’ and the ‘aged’ papilla cells to ‘rejuvenate’.


1991 ◽  
Vol 99 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C.A. Jahoda ◽  
A.J. Reynolds ◽  
C. Chaponnier ◽  
J.C. Forester ◽  
G. Gabbiani

We have examined the expression of smooth muscle alpha-actin in hair follicles in situ, and in hair follicle dermal cells in culture by means of immunohistochemistry. Smooth muscle alpha-actin was present in the dermal sheath component of rat vibrissa, rat pelage and human follicles. Dermal papilla cells within all types of follicles did not express the antigen. However, in culture a large percentage of both hair dermal papilla and dermal sheath cells were stained by this antibody. The same cells were negative when tested with an antibody to desmin. Overall, explant-derived skin fibroblasts had relatively low numbers of positively marked cells, but those from skin regions of high hair-follicle density displayed more smooth muscle alpha-actin expression than fibroblasts from areas with fewer follicles. 2-D SDS-PAGE confirmed that, unlike fibroblasts, cultured papilla cells contained significant quantities of the alpha-actin isoform. The rapid switching on of smooth muscle alpha-actin expression by dermal papilla cells in early culture, contrasts with the behaviour of smooth muscle cells in vitro, and has implications for control of expression of the antigen in normal adult systems. The very high percentage of positively marked cultured papilla and sheath cells also provides a novel marker of cells from follicle dermis, and reinforces the idea that they represent a specialized cell population, contributing to the heterogeneity of fibroblast cell types in the skin dermis, and possibly acting as a source of myofibroblasts during wound healing.



Author(s):  
Chao Sun ◽  
Shuang-Hai Hu ◽  
Bing-Qi Dong ◽  
Shan Jiang ◽  
Fang Miao ◽  
...  

Introduction: Although it has been reported that the anti-diabetic drug metformin has multiple extra-hypoglycemic activities, such as anti-oxidation, anti-aging and even anti-tumor, topical metformin also can induce hair regeneration, but the precise mechanism involved in that process is still unclear. Objectives: To assess the effect of metformin on hair growth in a mouse hair follicle reconstitution model generated by in vitro self-assembled three-dimensional aggregates of epidermal and dermal cells (3D aggregates). Methods: Epidermal cells and dermal cells were isolated and cultured from the mouse skin of fifty C57BL/6 mouse pups (1-day-old). For tracing the distribution of dermal cells during the self-assembly process of 3D aggregates, the dermal cells were labeled with Vybrant Dil cell-labelling solution and mixed with epidermal cells at 1:1 ratio. Formed 3D aggregates were treated with 10 mM metformin and then were grafted into recipient BALB/c nude mice. The biomarkers (HGF, CD133, ALP, β-catenin and SOX2) associated with the hair-inductive activity of dermal cells were detected in the grafted skin tissues and in cultured 3D aggregates treated with metformin using immunofluorescent staining, quantitative real-time RT-PCR (qRT-PCR), and western blotting. Furthermore, the expression levels of CD133 were also examined in dermal cells with different passage numbers using qRT-PCR and western blotting. Results: Metformin directly stimulates the activity of alkaline phosphatase (ALP) of cultured 3D aggregates, upregulates both the protein and mRNA expression levels of molecular markers (HGF, CD133, ALP, β-catenin and SOX2) and improves the survival rate of reconstituted hair follicles. Moreover, we also found that metformin increases the expression of CD133 in dermal cells thus maintaining their trichogenic capacity that would normally be lost by serial subculture. Conclusions: These results suggest that metformin can promote hair follicle regeneration in vitro through up-regulation of the hair inductive capability of dermal cells, warranting further evaluation in the clinical treatment of male or female pattern hair loss.



1992 ◽  
Vol 4 (2) ◽  
pp. 112
Author(s):  
T. Fujie ◽  
N Uchida ◽  
T Shikiji ◽  
Y Urano ◽  
S Arase






1988 ◽  
Vol 130 (2) ◽  
pp. 610-620 ◽  
Author(s):  
Marie-Cécile Lenoir ◽  
Bruno A. Bernard ◽  
Gérard Pautrat ◽  
Michel Darmon ◽  
Braham Shroot


2017 ◽  
Vol 16 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Wei Wu ◽  
Xiao-Li Wu ◽  
Yu-Qing Ji ◽  
Zhen Gao


1991 ◽  
Vol 99 (2) ◽  
pp. 373-385 ◽  
Author(s):  
A.J. Reynolds ◽  
C.A. Jahoda

Germinative epidermal cells in the lower end bulb region of anagen hair follicles are highly active, and give rise to hair fibres through rapid proliferation and complex differentiation. They have often been termed hair follicle stem cells, but owing to difficulties in isolation and identification their properties have previously only been clearly documented in vivo. We aimed to isolate and culture germinative cells in vitro, and used microdissection methods to dissect a small but identifiable group of cells from complete follicles. Transmission electron microscopy confirmed that the isolated cells were identical to germinative epidermal cells in situ. SDS-PAGE was used to show that they did not have the same protein composition as epidermis from their immediate proximity (overlying hair matrix), or from other follicular (outer root sheath) and interfollicular (skin basal) regions. Moreover, the germinative cells were found to display morphology and in vitro behaviour that distinguished them from comparative epidermal cells. When cultured in media and on substrata normally conducive to epidermal cell growth they remained in a quiescent state, and did not divide or differentiate. In contrast to other epidermal cells that formed typical pavement-like arrangements, germinative cells remained uniformly small, round and closely packed. However, when cultured in association with hair follicle dermal papilla cells they were radically stimulated into proliferative and aggregative behaviour. Furthermore, they were able to form organotypic-like structures, and exceptionally for skin-derived cell recombinations, a distinct basal lamina at the papilla-germinative cell junction. These results provide evidence that hair follicle germinative cells have intriguing properties that distinguish them from other follicular epidermis. The finding that they can be activated by dermal papilla cells reflects the intimate nature of the papilla-germinative cell relationship in situ, and should facilitate research into hair growth control mechanisms. The nature of germinative cells is discussed in the wider context of hair follicle stem-cell terminology.



1987 ◽  
Vol 35 (3) ◽  
pp. 236-248 ◽  
Author(s):  
Hans-Jürgen Stark ◽  
Dirk Breitkreutz ◽  
Alain Limat ◽  
Paul Bowden ◽  
Norbert E. Fusenig


1992 ◽  
Vol 54 (4) ◽  
pp. 727-732 ◽  
Author(s):  
Naoyuki UCHIDA ◽  
Takesi FUJIE ◽  
Seiji ARASE ◽  
Yosiroh NINOMIYA ◽  
Hideki NAKANISI ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document