Metformin Promotes the Hair-Inductive Activity of Three-Dimensional Aggregates of Epidermal and Dermal Cells Self-Assembled In Vitro

Author(s):  
Chao Sun ◽  
Shuang-Hai Hu ◽  
Bing-Qi Dong ◽  
Shan Jiang ◽  
Fang Miao ◽  
...  

Introduction: Although it has been reported that the anti-diabetic drug metformin has multiple extra-hypoglycemic activities, such as anti-oxidation, anti-aging and even anti-tumor, topical metformin also can induce hair regeneration, but the precise mechanism involved in that process is still unclear. Objectives: To assess the effect of metformin on hair growth in a mouse hair follicle reconstitution model generated by in vitro self-assembled three-dimensional aggregates of epidermal and dermal cells (3D aggregates). Methods: Epidermal cells and dermal cells were isolated and cultured from the mouse skin of fifty C57BL/6 mouse pups (1-day-old). For tracing the distribution of dermal cells during the self-assembly process of 3D aggregates, the dermal cells were labeled with Vybrant Dil cell-labelling solution and mixed with epidermal cells at 1:1 ratio. Formed 3D aggregates were treated with 10 mM metformin and then were grafted into recipient BALB/c nude mice. The biomarkers (HGF, CD133, ALP, β-catenin and SOX2) associated with the hair-inductive activity of dermal cells were detected in the grafted skin tissues and in cultured 3D aggregates treated with metformin using immunofluorescent staining, quantitative real-time RT-PCR (qRT-PCR), and western blotting. Furthermore, the expression levels of CD133 were also examined in dermal cells with different passage numbers using qRT-PCR and western blotting. Results: Metformin directly stimulates the activity of alkaline phosphatase (ALP) of cultured 3D aggregates, upregulates both the protein and mRNA expression levels of molecular markers (HGF, CD133, ALP, β-catenin and SOX2) and improves the survival rate of reconstituted hair follicles. Moreover, we also found that metformin increases the expression of CD133 in dermal cells thus maintaining their trichogenic capacity that would normally be lost by serial subculture. Conclusions: These results suggest that metformin can promote hair follicle regeneration in vitro through up-regulation of the hair inductive capability of dermal cells, warranting further evaluation in the clinical treatment of male or female pattern hair loss.

2021 ◽  
Vol 8 ◽  
Author(s):  
Weifeng Zhang ◽  
Hualong Deng ◽  
Yanfen Liu ◽  
Shaohong Chen ◽  
You Liu ◽  
...  

Peste des petits ruminants virus (PPRV), belonging to the genus Morbillivirus in the family Paramyxoviridae, causes severe infectious disease in small ruminants and has been rapidly spreading in many parts of Africa, the Middle East, and Asia. Although vaccination is considered to be an effective means of controlling PPR, the heat-sensitive nature of the vaccines against PPRV greatly limits their application in areas with a hot climate. In the present study, we investigated the anti-PPRV effects of favipiravir and sought to identify the underlying mechanisms in vitro using the Vero cell line. MTT assays, Western blotting, indirect immunofluorescence assays, virus plaque formation assays, and qRT-PCR were used to assess the effects of favipiravir on the life cycle of PPRV and the expression of RNA-dependent RNA polymerase (RdRp). Additionally, the expression levels of JAK1, STAT1, phosphorylated (p)-STAT1, PI3K, AKT, and p-AKT, as well as those of signaling molecules acting downstream of the JAK/STAT and PI3K/AKT signaling pathways, were determined by Western blotting and qRT-PCR. The results indicated that, in PPRV-infected, favipiravir-treated Vero cells, the attachment, invasion, replication, and release of PPRV were significantly inhibited, as was the expression of RdRp, when compared with that in untreated PPRV-infected cells. Furthermore, in favipiravir-treated cells, the expression of JAK1 and STAT1 was downregulated, whereas that of p-STAT1 was significantly upregulated. Similarly, the expression levels of PKR, IRF9, ISG54, and MxA proteins that are associated with innate antiviral activity in host cells were also markedly increased. Moreover, with favipiravir treatment, the expression of PI3K and p-AKT and the p-AKT/AKT ratio were significantly decreased, whereas the expression of AKT was noticeably upregulated. The expression of GSK3, NF-κB p65, p-NF-κB p65, and BAD was also increased with favipiravir treatment, while the expression of CREB, p-CREB, p-GSK3, and Bcl-2 was slightly decreased. In addition, all the p-GSK3/GSK3, p-CREB/CREB, p-NF-κB/NF-κB, and p-BAD/BAD ratios were significantly reduced in favipiravir-treated cells. These results implied that the antiviral effectivity of favipiravir against PPRV is mediated by the JAK/STAT and PI3K/AKT pathways and that favipiravir has potential for use as an effective antiviral agent against PPRV.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiqun Su ◽  
Jie Wen ◽  
Junrong Zhu ◽  
Zhiwei Xie ◽  
Chang Liu ◽  
...  

Abstract Background Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. Methods Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. Results Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. Conclusions In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3085-3094
Author(s):  
A.J. Reynolds ◽  
C.A. Jahoda

Low passage cultured dermal papilla cells from adult rats stimulate complete hair follicle neogenesis when re-implanted into heterotypic skin. In contrast, cultured sheath cells are non-inductive despite sharing other behavioural characteristics (a common lineage and in situ proximity) with papilla cells. However, since sheath cells can behave inductively in amputated follicles after regenerating the papilla, this poses the question of what influences the sheath to papilla cell transition? During reciprocal tissue interactions specific epidermal cues are crucial to skin appendage development, and while in vivo assays to date have focussed on dermal interactive influence, our aim was to investigate epidermal potential. We have previously observed that hair follicle epidermal cells display exceptional interactive behaviour when combined with follicle dermal cells in vitro. Thus in the present study, hair follicle germinative, outer root sheath or skin basal epidermal cells were separately combined with each of three non-inductive dermal cell types (high passage papilla, low passage sheath or fibroblast) and then implanted into small ear skin wounds. The sheath/germinative and papilla/germinative cell implants repeatedly induced giant vibrissa-type follicles and fibres. In complete contrast, any single cell type and all other forms of recombination were consistently non-inductive. Hence, the adult germinative epidermal cells enable non-inductive adult dermal cells to stimulate hair follicle neogenesis, effectively, by altering their ‘status’, causing the sheath cells to ‘specialise’ and the ‘aged’ papilla cells to ‘rejuvenate’.


Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 53-70
Author(s):  
J.-M. Verna

Axons from dorsal root ganglion cells cultured in a serum-free medium on poly-L-lysine or collagen substrates interact differently with dermis and epidermis. The orientation of neurite growth is not changed by encountering mesenchymal cells migrating from the outgrowth zone of a dermal explant, and neurites form close membrane associations with some dermal cells; in contrast, neurites strongly avoid epidermis and deviate around the edge of an epidermal explant. When cultures are grown on polylysine this avoidance behaviour occurs at a distance from the epidermis. It is suppressed in the presence of necrotic epidermal cells. We suggest that this avoidance is due to epidermal diffusible factor(s) which bind preferentially to polylysine. The possibility of an absence of specific recognition cues between neurites and epidermal cells is discussed.


2021 ◽  
Author(s):  
Xiaofeng Nian ◽  
Li Li ◽  
Xusheng Ma ◽  
Xiurong Li ◽  
Wenhui Li ◽  
...  

Abstract Background: Echinococcus multilocularis (Em) infection and the growth and proliferation of its metacestode within the internal organs of hosts are related to complex host–parasite interactions at the molecular level. Previous studies reported the profiles of long non-coding RNAs (lncRNAs) and mRNAs in Echinococcus granulosus-infected mice or cells, suggesting the potential role of lncRNAs in regulating host-parasite interplay. However, the profiles of lncRNAs and mRNAs of mice in response to Em are poorly understood. Methods: Numerous differentially expressed lncRNAs (DELs) and mRNAs (DEMs) in the mouse liver at eight time points after Em infection were identified by microarray. Functional Annotation of dysregulated DEMs was conducted by gene ontology (GO) classification and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The potential function of DELs was predicted by constructing lncRNA-mRNA co-expression network and Transcription factor (TF)-lncRNA-mRNA Ternary Network. Additionally, qRT-PCR and western blotting were used to validate the upregulated DEMs at 30 days post-infection (dpi), which were enriched in Toll-like and RIG-I-like receptor signaling pathways. Cytokines and chemokines involved in these two pathways were determined by ELISA.Results: Thirty-one DEMs and 68 DELs were found continuously dysregulated. These DEMs were notably enriched in the “antigen processing and presentation,” “Th1 and Th2 cell differentiation” and “Th17 cell differentiation” pathways. The potential function prediction of DELs revealed that most DELs might influence the differentiation of Th17 cell and TGF-β/Smad pathway through trans regulating the SMAD3, STAT1, and early growth response (EGR) genes. Additionally, the validated results by qRT-PCR and western blotting showed that the mRNA expression levels of these genes increased while the corresponding protein expression levels were unaltered except c-Jun amino-terminal kinase (JNK). Regardless, phospho-nuclear factor Kappa B (p-NF-κB) downstream of these two pathways was induced at 15 and 30 dpi, which led to the elevated levels of IL-1 beta and IL-6 in the serum. Conclusion: Our data provide novel clues in understanding the roles of lncRNAs in the host–Em interplay and the influence of Em infection on host innate immunity.


2019 ◽  
Vol 8 (11) ◽  
pp. 1880 ◽  
Author(s):  
Else Driehuis ◽  
Sacha Spelier ◽  
Irati Beltrán Hernández ◽  
Remco de Bree ◽  
Stefan M. Willems ◽  
...  

Patients diagnosed with head and neck squamous cell carcinoma (HNSCC) are currently treated with surgery and/or radio- and chemotherapy. Despite these therapeutic interventions, 40% of patients relapse, urging the need for more effective therapies. In photodynamic therapy (PDT), a light-activated photosensitizer produces reactive oxygen species that ultimately lead to cell death. Targeted PDT, using a photosensitizer conjugated to tumor-targeting molecules, has been explored as a more selective cancer therapy. Organoids are self-organizing three-dimensional structures that can be grown from both normal and tumor patient-material and have recently shown translational potential. Here, we explore the potential of a recently described HNSCC–organoid model to evaluate Epidermal Growth Factor Receptor (EGFR)-targeted PDT, through either antibody- or nanobody-photosensitizer conjugates. We find that EGFR expression levels differ between organoids derived from different donors, and recapitulate EGFR expression levels of patient material. EGFR expression levels were found to correlate with the response to EGFR-targeted PDT. Importantly, organoids grown from surrounding normal tissues showed lower EGFR expression levels than their tumor counterparts, and were not affected by the treatment. In general, nanobody-targeted PDT was more effective than antibody-targeted PDT. Taken together, patient-derived HNSCC organoids are a useful 3D model for testing in vitro targeted PDT.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongpan Huang ◽  
Xinliang Li ◽  
Xi Zhang ◽  
Jiayu Tang

Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait and has been shown to exhibit a diverse range of pharmacological properties. The aim of the present study was to investigate the role of OMT in diabetic brain injury in vivo and in vitro. Diabetic rats were induced by intraperitoneal injection of a single dose of 65 mg/kg streptozotocin (STZ) and fed a high-fat and high-cholesterol diet. Memory function was assessed using a Morris water maze test. A SH-SY5Y cell injury model was induced by incubation with glucose (30 mM/l) to simulate damage in vitro. The serum fasting blood glucose, insulin, serum S100B, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were analyzed using commercial kits. Morphological changes were observed using Nissl staining and electron microscopy. Cell apoptosis was assessed using Hoechst staining and TUNEL staining. NADPH oxidase (NOX) and caspase-3 activities were determined. The effects of NOX2 and NOX4 knockdown were assessed using small interfering RNA. The expression levels of NOX1, NOX2, and NOX4 were detected using reverse transcription-quantitative PCR and western blotting, and the levels of caspase-3 were detected using western blotting. The diabetic rats exhibited significantly increased plasma glucose, insulin, reactive oxygen species (ROS), S-100B, and MDA levels and decreased SOD levels. Memory function was determined by assessing the percentage of time spent in the target quadrant, the number of times the platform was crossed, escape latency, and mean path length and was found to be significantly reduced in the diabetic rats. Hyperglycemia resulted in notable brain injury, including histological changes and apoptosis in the cortex and hippocampus. The expression levels of NOX2 and NOX4 were significantly upregulated at the protein and mRNA levels, and NOX1 expression was not altered in the diabetic rats. NOX and caspase-3 activities were increased, and caspase-3 expression was upregulated in the brain tissue of diabetic rats. OMT treatment dose-dependently reversed behavioral, biochemical, and molecular changes in the diabetic rats. In vitro, high glucose resulted in increases in reactive oxygen species (ROS), MDA levels, apoptosis, and the expressions of NOX2, NOX4, and caspase-3. siRNA-mediated knockdown of NOX2 and NOX4 decreased NOX2 and NOX4 expression levels, respectively, and reduced ROS levels and apoptosis. The results of the present study suggest that OMT alleviates diabetes-associated cognitive decline, oxidative stress, and apoptosis via NOX2 and NOX4 inhibition.


2018 ◽  
Vol 28 (5) ◽  
pp. 510-521 ◽  
Author(s):  
Jing Li ◽  
Feiyue Xing ◽  
Feng Chen ◽  
Liumin He ◽  
Kwok-Fai So ◽  
...  

The severe shortage of donor liver organs requires the development of alternative methods to provide transplantable liver tissues such as stem cell-derived organoids. Despite several studies describing the generation of vascularized and functional liver tissues, none have succeeded in assembling human liver buds containing hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs). Here, we report a reproducible, easy-to-follow, and comprehensive self-assembly protocol to generate three-dimensional (3D) human liver buds from naïve mesenchymal stem cells (MSCs), MSC-derived hepatocytes, and HSC- and LSEC-like cells. By optimizing the ratio between these different cell lineages, the cell mixture self-assembled into 3D human liver buds within 72 h in vitro, and exhibited similar characteristics with early-stage murine liver buds. In a murine model of acute liver failure, the mesenteric transplantation of self-assembled human liver buds effectively rescued animal death, and triggered hepatic ameliorative effects that were better than the ones observed after splenic transplantation of human hepatocytes or naïve MSCs. In addition, transplanted human liver buds underwent maturation during injury alleviation, after which they exhibited a gene expression profile signature similar to the one of adult human livers. Collectively, our protocol provides a promising new approach for the in vitro construction of functional 3D human liver buds from multiple human MSC-derived hepatic cell lineages; this new technique would be useful for clinical transplantation and regenerative medicine research.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3439-3439
Author(s):  
Dirk Hose ◽  
John DeVos ◽  
Nadine Müller ◽  
Jean-Francois Rossi ◽  
Christiane Heiß ◽  
...  

Abstract AIM. Expression changes of D-type cyclins are thought to be an early event in the genesis of Multiple Myeloma and are associated with distinct cytogenetic aberrations. These aberrations appear with different percentages (“clonal” or “subclonal”) in a given patient. We assessed whether the height of CCND expression assessed by gene expression profiling and quantitative RT-PCR (qRT-PCR) correlates with the presence of clonal or subclonal aberrations of 11q13, t(11;14) and t(4;14). PATIENTS AND METHODS. 128 newly diagnosed MM-patients (65 training (TG)/63 independent validation group (VG)) and 14 normal donors (ND) were included. Bone marrow aspirates were CD138-purified by activated magnetic cell sorting. RNA was in-vitro transcribed and hybridised to Affymetrix HG U133 A+B GeneChip (TG) and HG U133 2.0 plus array (VG). CCND1 and CCND2 expression was verified by real time RT-PCR and western blotting. iFISH was performed on purified MM-cells using probesets for chromosomes 1q21, 9q34, 11q23, 11q13, 13q14, 15q22, 17p13, 19q13, 22q11 and the translocations t(4;14) and t(11;14). Clonal aberrations were defined as being present in >60%, subclonal aberrations in 20 to 60% of MMC in a given patient. Expression data were gcrma normalised and a Kruskal-Wallis rank sum test used (Bioconductor). RESULTS. 11q13+. CCND1 (208711_s_at, 208712_at) is significantly higher (p<0.0001), CCND2 (200953_s_at, 200951_s_at) significantly lower (p<0.0001) expressed in MMC harbouring clonal, compared to subclonal, or no gain of 11q13. t(11;14). CCND1 is significantly higher (p<0.0001), CCND2 significantly lower (p<0.0001) expressed in MMC harbouring clonal, compared to subclonal, or no t(11;14). t(4;14). CCND1 is significantly lower (p<0.0001), CCND2 significantly higher (p<0.0001) expressed in MMC harbouring clonal compared to subclonal, or no t(4;14). The expression of CCND3 (201700_at) is not significantly different between the 3 groups for all aberrations investigated. CCND2 and CCND3, but not CCND1 are expressed by normal plasma cells. Results have been verified by qRT-PCR (n=40) for CCND1 and CCND2. Expression of CCND1, CCND2 and CCND3 has been verified by western blotting on selected samples. The expression of CCND2 correlates with short EFS, but not if patients with t(4;14) are excluded. There is no significant difference in EFS for patients harbouring the respective aberrations in a clonal or subclonal pattern. CONCLUSION. An additional copy of 11q13 or t(11;14) correlates with increased CCND1 and decreased CCND2 expression, a t(4;14) is associated with an increase of CCND2 and a decrease of CCND1 expression. In each case, the height of the CCND-expression is significantly different whether the respective aberration is clonal or subclonal. Thus, when interpreting expression data in the context of cytogenetic aberrations, it is important to consider if plasma cells carry a respective aberration in a subclonal/clonal pattern.


Sign in / Sign up

Export Citation Format

Share Document