actin expression
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 34)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Author(s):  
ROSY PAOLA CARDENAS ◽  
Homero F. Pastrana-Rendón ◽  
Alba G. Ávila-Bernal ◽  
Angélica M. Ramírez-Martínez ◽  
Myriam L. Navarrete-Jimenez ◽  
...  

Conventional doses of therapeutic ultrasound alter the mechanical behavior of ligament fibroblasts to improve the regenerative and remodeling stages of the wound healing process. Using a multidisciplinary approach, we applied ultrasound doses of 1.0 and 2.0 W/cm 2 at 1 MHz frequency for five days on ligament fibroblasts. Atomic force microscopy showed a decrease in cell elastic modulus for both doses, but the treated cells were still viable based on flow cytometry. Finite element method analysis exhibited visible cytoskeleton displacements and decreased harmonics in treated cells. Colorimetric assay revealed increased cell proliferation, while scratch assay showed increased migration at low doses. An increase in collagen and fibronectin was detected by enzyme-linked immunoassay at high doses, and β-actin expression for both treatments was visualized through immunofluorescence imaging. Both doses of ultrasound altered the fibroblast mechanical properties due to cytoskeletal reorganization and enhanced the early and late stages of cell repair.


2021 ◽  
Vol 22 (22) ◽  
pp. 12188
Author(s):  
Hong-Bo Fan ◽  
Yuan Zou ◽  
Qing Han ◽  
Qian-Wang Zheng ◽  
Ying-Li Liu ◽  
...  

Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoli Huang ◽  
Minghao Li ◽  
Jincheng Wang ◽  
Lili Ji ◽  
Yi Geng ◽  
...  

Aquatic products are one of the world’s essential protein sources whose quality and safety are threatened by bacterial diseases. This study investigated the possible effects of bacterial infection on the main edible part, the muscle, in the case of crayfish infected with Citrobacter freundii. The histopathological analysis confirmed that crayfish was sensitive to C. freundii and muscle was one of the target organs. The transcriptome results showed impaired intercellular junctions, downregulation of actin expression, and inhibition of metabolic pathways. Furthermore, transcriptomic results suggest that C. freundii mainly affect muscle structure and nutrition. Subsequent validation experiments confirmed structural damage and nutrient loss in C. freundii infected crayfish muscle. Besides, the spoilage tests showed that C. freundii did not accelerate muscle spoilage and the bacteria had a limited impact on food safety. Therefore, although C. freundii may not be a specific spoilage bacterium, it still affects the edible taste and nutritional value of crayfish muscle. The findings of this study might contribute to further research on C. freundii infection and provide a warning about the adverse effects of bacterial infection on aquatic products.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Elena N Tolkunova

  Gliomas are solid brain tumors composed of tumor cells and recruited heterogenic stromal component. The study of the interactions between the perivascular niche and its surrounding cells is of great value in unraveling mechanisms of drug resistance in malignant gliomas.   In this study, we isolated the stromal diploid cell population from oligodendroglioma and a mixed population of tumor aneuploid and stromal diploid cells from astrocytoma specimens. The stromal cells expressed neural stem/progenitor and mesenchymal markers showing the same discordant phenotype that is typical for glioma cells. Moreover, some of the stromal cells expressed CD133. For the first time, we demonstrated that this type of stromal cells had the typical myofibroblastic phenotype as the α-SMA+ cells formed α-SMA fibers and exhibited the specific function to deposit extracellular matrix (ECM) proteins at least in vitro. Immunofluorescent analysis showed diffuse or focal α-SMA staining in the cytoplasm of the astrocytoma-derived, A172, T98G, and U251MG glioma cells. We could suggest that α-SMA may be one of the main molecules, bearing protective functions. Possible mechanisms and consequences of α-SMA disruptions in gliomas are discussed.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 411
Author(s):  
Roland Baumgartner ◽  
Felipe B. Casagrande ◽  
Randi B. Mikkelsen ◽  
Martin Berg ◽  
Konstantinos A. Polyzos ◽  
...  

G-protein-coupled receptor-35 (GPR35) has been identified as a receptor for the tryptophan metabolite kynurenic acid (KynA) and suggested to modulate macrophage polarization in metabolic tissues. Whether GPR35 can influence vascular inflammation and atherosclerosis has however never been tested. Lethally irradiated LdlrKO mice were randomized to receive GPR35KO or wild type (WT) bone marrow transplants and fed a high cholesterol diet for eight weeks to develop atherosclerosis. GPR35KO and WT chimeric mice presented no difference in the size of atherosclerotic lesions in the aortic arch (2.37 ± 0.58% vs. 1.95 ± 0.46%, respectively) or in the aortic roots (14.77 ± 3.33% vs. 11.57 ± 2.49%, respectively). In line with these data, no changes in the percentage of VCAM-1+, IAb + cells, and CD3+ T cells, as well as alpha smooth muscle cell actin expression, was observed between groups. Interestingly, the GPR35KO group presented a small but significant increase in CD68+ macrophage infiltration in the plaque. However, in vitro culture experiments using bone marrow-derived macrophages from both groups indicated that GPR35 plays no role in modulating the secretion of major inflammatory cytokines. Our study indicates that GPR35 expression does not play a direct role in macrophage activation, vascular inflammation, and the development of atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter R. Corridon ◽  
Shurooq H. Karam ◽  
Ali A. Khraibi ◽  
Anousha A. Khan ◽  
Mohamed A. Alhashmi

AbstractSevere renal ischemia-reperfusion injury (IRI) can lead to acute and chronic kidney dysfunction. Cytoskeletal modifications are among the main effects of this condition. The majority of studies that have contributed to the current understanding of IRI have relied on histological analyses using exogenous probes after the fact. Here we report the successful real-time visualization of actin cytoskeletal alterations in live proximal and distal tubules that arise at the onset of severe IRI. To achieve this, we induced fluorescent actin expression in these segments in rats with hydrodynamic gene delivery (HGD). Using intravital two-photon microscopy we then tracked and quantified endogenous actin dysregulation that occurred by subjecting these animals to 60 min of bilateral renal ischemia. Rapid (by 1-h post-reperfusion) and significant (up to 50%) declines in actin content were observed. The decline in fluorescence within proximal tubules was significantly greater than that observed in distal tubules. Actin-based fluorescence was not recovered during the measurement period extending 24 h post-reperfusion. Such injury decimated the renal architecture, in particular, actin brush borders, and hampered the reabsorptive and filtrative capacities of these tubular compartments. Thus, for the first time, we show that the combination of HGD and intravital microscopy can serve as an experimental tool to better understand how IRI modifies the cytoskeleton in vivo and provide an extension to current histopathological techniques.


Sign in / Sign up

Export Citation Format

Share Document