Bax promotes neuronal cell death and is downregulated during the development of the nervous system

Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1239-1249 ◽  
Author(s):  
K. Vekrellis ◽  
M.J. McCarthy ◽  
A. Watson ◽  
J. Whitfield ◽  
L.L. Rubin ◽  
...  

The Bcl-2 and Bcl-x proteins suppress programmed cell death, whereas Bax promotes apoptosis. We investigated the pattern of expression of Bcl-2, Bax and Bcl-x during neuronal differentiation and development. All three proteins were widely expressed in neonatal rats but, in the adult, Bax levels were 20- to 140-fold lower in the cerebral cortex, cerebellum and heart muscle, whereas Bcl-x was not downregulated in any of the tissues examined. In the cerebral cortex and cerebellum, the decrease in Bax levels occurred after the period of developmental cell death. Further, microinjection of a Bax expression vector into cultured sympathetic neurons, which depend on nerve growth factor for survival, induced apoptosis in the presence of survival factor and increased the rate of cell death after nerve growth factor withdrawal. This effect could be blocked by co-injection of an expression vector for Bcl-xL or for the baculovirus p35 protein, an inhibitor of caspases (ICE-like proteases). These results suggest that, during development, the sensitivity of neurons to signals that induce apoptosis may be regulated by modulating Bax levels and that Bax-induced death requires caspase activity.

2019 ◽  
Vol 9 (8) ◽  
pp. 204 ◽  
Author(s):  
Marina Sycheva ◽  
Jake Sustarich ◽  
Yuxian Zhang ◽  
Vaithinathan Selvaraju ◽  
Thangiah Geetha ◽  
...  

We have previously shown that the expression of pro-nerve growth factor (proNGF) was significantly increased, nerve growth factor (NGF) level was decreased, and the expression of p75NTR was enhanced in Alzheimer’s disease (AD) hippocampal samples. NGF regulates cell survival and differentiation by binding TrkA and p75NTR receptors. ProNGF is the precursor form of NGF, binds to p75NTR, and induces cell apoptosis. The objective of this study is to determine whether the increased p75NTR expression in AD is due to the accumulation of proNGF and Rho kinase activation. PC12 cells were stimulated with either proNGF or NGF. Pull-down assay was carried out to determine the RhoA kinase activity. We found the expression of p75NTR was enhanced by proNGF compared to NGF. The proNGF stimulation also increased the RhoA kinase activity leading to apoptosis. The expression of active RhoA kinase was found to be increased in human AD hippocampus compared to control. The addition of RhoA kinase inhibitor Y27632 not only blocked the RhoA kinase activity but also reduced the expression of p75NTR receptor and inhibited the activation of JNK and MAPK induced by proNGF. This suggests that overexpression of proNGF in AD enhances p75NTR expression and activation of RhoA, leading to neuronal cell death.


1990 ◽  
Vol 4 (1-2) ◽  
pp. 57-91 ◽  
Author(s):  
J. Regino Perez-Polo ◽  
Perry J. Foreman ◽  
George R. Jackson ◽  
Din-e Shan ◽  
Giulio Taglialatela ◽  
...  

Author(s):  
Keiko Mayumi-Matsuda ◽  
Satoshi Kojima ◽  
Takashi Nakayama ◽  
Harukazu Suzuki ◽  
Tsuneaki Sakata

1991 ◽  
Vol 115 (2) ◽  
pp. 461-471 ◽  
Author(s):  
A Batistatou ◽  
L A Greene

Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.


1992 ◽  
Vol 119 (6) ◽  
pp. 1669-1680 ◽  
Author(s):  
P W Mesner ◽  
T R Winters ◽  
S H Green

Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation.


Sign in / Sign up

Export Citation Format

Share Document