Diploid parthenogenetic mouse embryos produced by heat-shock and Cytochalasin B
Swiss albino and C57BL/10 eggs from induced ovulations, and spontaneously ovulated A eggs, were activated in vitro by a heat shock of 44 °C for 5 or 7·5 min and cultured in the presence of 10 μg/ml of Cytochalasin B (CB) for 5–8 h. The activation rate was about 70 % in Swiss albino, 40 % in C57BL and 90 % in A eggs. CB suppressed second polar body (2P.B.) formation in over 90 % of activated eggs, with the majority containing two pronuclei. When eggs were placed in CB-free medium their surface became wrinkled and they formed protrusions of various sizes, which in some eggs detached to form enucleate or pronucleate cytoplasmic fragments; some eggs broke down completely into fragments. In most eggs, however, the surface smoothed out in a few hours and suppression of 2P.B. appeared to be permanent. The rate of development of these eggs after transplantation to the oviduct was delayed in terms both of cell divisions and of the time of blastocyst formation. Out of 41 implants collected on the 8th–10th day of pregnancy only two healthy looking egg-cylinders were found on the 8th and 9th day; both were retarded, at the stage characteristic for the 7th day of normal development. The reasons for delayed preimplantation development and low implantation rate are discussed. The present experiments corroborate earlier observations that parthenogenetic mouse embryos, even if diploid, rarely survive in the uterus beyond the egg-cylinder stage.