haploid nucleus
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Maria Eugenia Teves ◽  
Eduardo R.S. Roldán

The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ~30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels. First, analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success. Second, examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.


2020 ◽  
Author(s):  
Ben Auxier ◽  
Tamas Czaran ◽  
Duur Aanen

AbstractAltruistic social interactions generally evolve between genetically related individuals or other replicators, whereas sexual interactions usually occur among unrelated individuals. This tension between social and sexual interactions is resolved by policing mechanisms enforcing cooperation among genetically unrelated entities. For example, most organisms with two haploid genomes are diploid, both genomes encapsulated inside a single nuclear envelope. A fascinating exception to this are Basidiomycete fungi, where the two haploid genomes remain separate. Uniquely, the haploid nuclei of the dikaryon can fertilize subsequent gametes encountered, the presumed benefit of this lifecycle. The implications for the balance of selection within and among individuals are largely unexplored. We modelled the implications of a fitness tradeoff at the level of the haploid nucleus versus the level of the fungal individual. We show that the most important policing mechanism is prohibition of fusion between dikaryons, which can otherwise select for detrimental levels of nuclear mating fitness. An additional policing mechanism revealed by our model is linkage between loci with fitness consequences. Our results show that benefits of di-mon matings must be paired with policing mechanisms to avoid uncontrolled selection at the level of the nuclei. Furthermore, we discuss evolutionary implications of recent claims of nuclear exchange in related fungal groups.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng Li ◽  
Narayana M. Upadhyaya ◽  
Jana Sperschneider ◽  
Oadi Matny ◽  
Hoa Nguyen-Phuc ◽  
...  

Abstract Parasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However, non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), such as Ug99, are a major threat to global food security. Here, we provide genomics-based evidence supporting that Ug99 arose by somatic hybridisation and nuclear exchange between dikaryons. Fully haplotype-resolved genome assembly and DNA proximity analysis reveal that Ug99 shares one haploid nucleus genotype with a much older African lineage of Pgt, with no recombination or chromosome reassortment. These findings indicate that nuclear exchange between dikaryotes can generate genetic diversity and facilitate the emergence of new lineages in asexual fungal populations.


2019 ◽  
Author(s):  
Feng Li ◽  
Narayana M. Upadhyaya ◽  
Jana Sperschneider ◽  
Oadi Matny ◽  
Hoa Nguyen-Phuc ◽  
...  

AbstractParasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), such as Ug99, are a major threat to global food security. Here we show that Ug99 arose by somatic hybridisation and nuclear exchange between dikaryons. Fully haplotype-resolved genome assembly and DNA proximity analysis revealed that Ug99 shares one haploid nucleus genotype with a much older African lineage of Pgt, with no recombination or reassortment. Generation of genetic variation by nuclear exchange may favour the evolution of dikaryotism by providing an advantage over diploidy.


2010 ◽  
Vol 76 (24) ◽  
pp. 7990-7996 ◽  
Author(s):  
Kendra Baumgartner ◽  
Phillip Fujiyoshi ◽  
Gary D. Foster ◽  
Andy M. Bailey

ABSTRACT Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus.


2010 ◽  
Vol 54 (5) ◽  
pp. 827-835 ◽  
Author(s):  
Takafumi Fujimoto ◽  
Taiju Saito ◽  
Suzu Sakao ◽  
Katsutoshi Arai ◽  
Etsuro Yamaha

Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 1007-1015 ◽  
Author(s):  
Il-Young Ahn ◽  
Carlos E Winter

This work describes the physicochemical characterization of the genome and telomere structure from the nematode Oscheius tipulae CEW1. Oscheius tipulae is a free-living nematode belonging to the family Rhabditidae and has been used as a model system for comparative genetic studies. A new protocol that combines fluorescent detection of double-stranded DNA and S1 nuclease was used to determine the genome size of O. tipulae as 100.8 Mb (approximately 0.1 pg DNA/haploid nucleus). The genome of this nematode is made up of 83.4% unique copy sequences, 9.4% intermediate repetitive sequences, and 7.2% highly repetitive sequences, suggesting that its structure is similar to those of other nematodes of the genus Caenorhabditis. We also showed that O. tipulae has the same telomere repeats already found in Caenorhabditis elegans at the ends and in internal regions of the chromosomes. Using a cassette-ligation-mediated PCR protocol we were able to obtain 5 different putative subtelomeric sequences of O. tipulae, which show no similarity to C. elegans or C. briggsae subtelomeric regions. DAPI staining of hermaphrodite gonad cells show that, as detected in C. elegans and other rhabditids, O. tipulae have a haploid complement of 6 chromosomes.Key words: Oscheius tipulae, Caenorhabditis elegans, DNA reassociation, telomere, genome size, karyotype.


2004 ◽  
Vol 15 (1) ◽  
pp. 207-218 ◽  
Author(s):  
Simon A. Rudge ◽  
Vicki A. Sciorra ◽  
Michelle Iwamoto ◽  
Chun Zhou ◽  
Thomas Strahl ◽  
...  

During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2synthesis.


Genome ◽  
2002 ◽  
Vol 45 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Pieternella C Luttikhuizen ◽  
Laas P Pijnacker

We investigated meiosis, fertilization, and early development in eggs of the tellinid bivalve Macoma balthica (L.), which has external fertilization. Meiosis is standard but polyspermy is found to be very common. In all eight crosses examined, mosaic embryos consisting of a mixture of diploid (2n = 38) and haploid cells occur at a frequency ranging from 2.7 to 29.1%. The earliest mosaic found is in the two-cell stage. We propose that an androgenic haploid cell lineage can originate from one supernumerary sperm that decondenses into a functional haploid nucleus, starts mitosis, and is incorporated in the developing embryo.Key words: bivalves, fertilization, embryos, polyspermy, mosaicism.


Sign in / Sign up

Export Citation Format

Share Document