Diploid and haploid mouse parthenogenetic development following in vitro activation and embryo transfer

Development ◽  
1974 ◽  
Vol 31 (3) ◽  
pp. 635-642
Author(s):  
M. H. Kaufman ◽  
R. L. Gardner

Parthenogenetic mouse embryos were selected following in vitro activation, and transferred to the oviducts of pseudopregnant recipients. Decidua was evoked by 50–56% of diploid parthenogenones compared to 35·1% of haploid embryos with a single pronucleus, 37·5% of immediate cleavage eggs and 77% of fertilized eggs (controls). On day 4, 58·7% of diploid parthenogenones were morphologically normal morulae or blastocysts; over 90% of these ‘normal’ embryos evoked decidua when retransferred to recipients compared to 8·9% of abnormal embryos flushed from the ‘transfer’ sides, suggesting that only ‘normal’ embryos could evoke decidua. Potentially diploid parthenogenones remained diploid on chromosomal examination on day 4.

Development ◽  
1975 ◽  
Vol 34 (2) ◽  
pp. 387-405
Author(s):  
S. A. Iles ◽  
M. W. McBurney ◽  
S. R. Bramwell ◽  
Z. A. Deussen ◽  
C. F. Graham

Mouse eggs were activated with hyaluronidase in vitro and subsequently transferred to the oviduct. In the female reproductive tract they formed morulae and blastocysts which died soon after implantation. Haploid blastocysts were transferred beneath the kidney capsule and here some formed disorganized egg-cylinder structures in a week. Morulae and blastocysts from haploid and diploid parthenogenones were also transferred beneath the testis capsule. Two to four months later the growths which had formed were sectioned. They contained neural tissue, pigment, keratinized epithelium, glandular epithelium, ciliated epithelium, cartilage, bone, muscle, adipose tissue, and haemopoietic tissue. The range of cell types was similar to that produced by fertilized control blastocysts except that the parthenogenones did not form identifiable yolk-sac carcinoma or embryonal carcinomacells. The growths from haploid and diploid parthenogenones in the testis were stained with Feulgen and their DNA content measured. Growths from diploid embryos contained the normal diploid amount of DNA while growths from haploid embryos contained less than this amount. Cell cultures were prepared from the growths. The cells which were investigated contained no Y chromosome, suggesting that they were derived from the embryonic cells rather than the cells of the male host. These cells contained a near diploid chromosome number, although some of them were originally derived from haploid embryos.


Development ◽  
1976 ◽  
Vol 35 (1) ◽  
pp. 179-190
Author(s):  
Matthew H. Kaufman ◽  
Leo Sachs

The present experiments were undertaken to determine whether, in parthenogenesis, heterozygous embryos develop better than homozygous embryos. Such experiments may provide an approach to elucidating whether fertilized embryos develop better than parthenogenetic ones because of heterozygosity, or if the sperm provides another contribution necessary for complete embryonic development. The parthenogenetic embryos studied included uniform haploids after extrusion of the second polar body, mosaic haploids in which each blastomere contained a genetically different haploid nucleus, and heterozygous diploid mouse embryos. Eggs were activated and cultured in a chemically denned medium. About three times as many mosaic haploid or heterozygous diploid eggs developed beyond the 4-cell stage after 98–100 h and to the blastocyst stage after 120 h in culture, than uniform haploid eggs. This indicates that the development of parthenogenetic embryos is probably under genetic control and that there was a better development of the heterozygous embryos. Mosaic haploid embryos showed the same high frequency of development as heterozygous diploids. The results therefore indicate that heterozygosity provided a developmental advantage even when distributed between two genetically different clones of cells in the same embryo.


Development ◽  
1976 ◽  
Vol 35 (1) ◽  
pp. 25-39
Author(s):  
Hanna Bałakier ◽  
Andrzej K. Tarkowski

Swiss albino and C57BL/10 eggs from induced ovulations, and spontaneously ovulated A eggs, were activated in vitro by a heat shock of 44 °C for 5 or 7·5 min and cultured in the presence of 10 μg/ml of Cytochalasin B (CB) for 5–8 h. The activation rate was about 70 % in Swiss albino, 40 % in C57BL and 90 % in A eggs. CB suppressed second polar body (2P.B.) formation in over 90 % of activated eggs, with the majority containing two pronuclei. When eggs were placed in CB-free medium their surface became wrinkled and they formed protrusions of various sizes, which in some eggs detached to form enucleate or pronucleate cytoplasmic fragments; some eggs broke down completely into fragments. In most eggs, however, the surface smoothed out in a few hours and suppression of 2P.B. appeared to be permanent. The rate of development of these eggs after transplantation to the oviduct was delayed in terms both of cell divisions and of the time of blastocyst formation. Out of 41 implants collected on the 8th–10th day of pregnancy only two healthy looking egg-cylinders were found on the 8th and 9th day; both were retarded, at the stage characteristic for the 7th day of normal development. The reasons for delayed preimplantation development and low implantation rate are discussed. The present experiments corroborate earlier observations that parthenogenetic mouse embryos, even if diploid, rarely survive in the uterus beyond the egg-cylinder stage.


Author(s):  
I. F. Gorlov ◽  
A. A. Mosolov ◽  
G. V. Komlatskiy ◽  
M. A. Nesterenko ◽  
K. D. Nimbona ◽  
...  

The article presents materials on the study of the possibility of reproduction and increase in the herd of highly productive cows through the use of embryo transplantation technology. The classical (in vivo) and more modern, developing (in vitro) methods of embryotransfer, their positive and negative sides are considered in detail. The possibility of accelerating the breeding process by using the method of transplantation, in which from one cow can be obtained from 10 to 100 calves, which will allow for 4-5 years, almost any herd (of any size and breed) with the help of biotechnology to turn into a cattle-breeding enterprise of the most modern level. At the same time, heifers obtained from unproductive cows can be used as "surrogate" mothers who are transplanted with the best donor embryos, which allows to obtain a full-fledged offspring adapted to local environmental conditions. A detailed scheme of obtaining, evaluation, storage, as well as the cost and economic effect of embryo transplantation was calculated, the market was evaluated, the required annual volume of transplants and the number of donor cows for large livestock farms were determined. As a positive example of "Scientific-production enterprise "Centre of biotechnology and embryo transfer" in 2014, implemented a project for accelerated replacement and genetic improvement of the dairy herd, engraftment averaged 57-69%, and the economic effect of the enterprise from getting a single animal by the method of embryo transfer, compared with imports of similar close in quality, ranged from 60 to 100 thousand rubles on his head. It is shown that it is necessary to organize at the state level a developed service for embryo transplantation to reduce the cost of embryo transfer and the possibility of creating in a short time in the country's own highly productive breeding nucleus of dairy and beef cattle, which will reduce, and in the future completely eliminate, import dependence on cattle products.


Sign in / Sign up

Export Citation Format

Share Document