The induction of neural crest-derived cartilage and bone by embryonic epithelia: an analysis of the mode of action of an epithelialmesenchymal interaction

Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 305-320
Author(s):  
Brian K. Hall

The formation of membrane bone from neural crest-derived mesenchyme of the maxillary and mandibular processes of the embryonic chick depends upon prior interactions between the mesenchyme and maxillary or mandibular epithelia. The present study explores the specificity of these interactions using tissue recombinations between heterotypic epithelia and mesenchyme. Mandibular and maxillary mesenchyme responded to maxillary and mandibular epithelia by forming bone. A third osteogenically inductive epithelium, the scleral epithelium with its specialized scleral papillae, also allowed mandibular mesenchyme to form bone, indicating that mesenchyme can form bone in response to osteogenic epithelia other than its own. Epithelia which normally do not induce membrane bone formation in situ (wing and leg bud, back and abdominal epithelia) also allowed mandibular epithelia to ossify as did mandibular epithelia from the 10-day-old foetal mouse. Thus this tissue interaction is neither site nor species specific. Mandibular epithelium allowed bone to form in osteogenic mesenchyme from the maxilla and the sclera of the chick and from the mouse mandible but would not induce bone formation from normally non-osteogenic mesenchyme of the limb buds, chorioallantoic membrane or trunk neural crest. The results obtained with all of the tissue recombinations were consistent with the epithelial- mesenchyme interactions that initiate osteogenesis in both the mandibular and the maxillary processes being permissive interactions. The distinction between permissive and instructive interactions is discussed.

Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 269-281
Author(s):  
Mary S. Tyler ◽  
David P. McCobb

In the present study, the question of whether a relatively non-specific epithelial requirement exists for membrane bone formation within the maxillary mesenchyme was investigated. Organ rudiments from embryonic chicks of three to five days of incubation (HH 18–25) were enzymatically separated into the epithelial and mesenchymal components. Maxillarymesenchyme (from embryos HH 18–19) which in the absence of epithelium will not form bone was recombined with epithelium from maxillae of similarly aged embryos (homotypichomochronic recombination) and of older embryos (HH 25) (homotypic-heterochronicrecombination). Heterotypic recombinations were made between maxillary mesenchyme (HH 18–19) and the epithelium from wing and hind-limb buds (HH 19–22). Recombinants were grown as grafts on thechorioallantoic membranes of host chick embryos. Grafts of intact maxillae, isolated maxillary mesenchyme, and isolated epithelia from the maxilla, wing-, and hind-limb buds weregrown as controls. The histodifferentiation of grafted intact maxillae was similar to that in vivo; both cartilage and membrane bone differentiated within the mesenchyme. Grafts of maxillary mesenchyme (from embryos HH 18–19) grown in the absence of epithelium formed cartilage but did not form membrane bone. Grafts of maxillary mesenchyme (from embryos HH 18–19) recombined with epithelium in homotypichomochronic, homotypic-heterochronic, and heterotypic tissue combinations formed membrane bone in addition to cartilage. These results indicate that maxillary mesenchyme requires the presence of epithelium to promote osteogenesis and that this epithelial requirement is relatively non-specific in terms of type and age of epithelium.


1986 ◽  
Vol 214 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Mary S. Tyler ◽  
Rachel A. Dewitt-Stott

Neuron ◽  
1989 ◽  
Vol 3 (6) ◽  
pp. 755-766 ◽  
Author(s):  
Marianne Bronner-Fraser ◽  
Scott Fraser

Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2751-2761 ◽  
Author(s):  
H. Epperlein ◽  
D. Meulemans ◽  
M. Bronner-Fraser ◽  
H. Steinbeisser ◽  
M.A. Selleck

We have examined the ability of normal and heterotopically transplanted neural crest cells to migrate along cranial neural crest pathways in the axolotl using focal DiI injections and in situ hybridization with the neural crest marker, AP-2. DiI labeling demonstrates that cranial neural crest cells migrate as distinct streams along prescribed pathways to populate the maxillary and mandibular processes of the first branchial arch, the hyoid arch and gill arches 1–4, following migratory pathways similar to those observed in other vertebrates. Another neural crest marker, the transcription factor AP-2, is expressed by premigratory neural crest cells within the neural folds and migrating neural crest cells en route to and within the branchial arches. Rotations of the cranial neural folds suggest that premigratory neural crest cells are not committed to a specific branchial arch fate, but can compensate when displaced short distances from their targets by migrating to a new target arch. In contrast, when cells are displaced far from their original location, they appear unable to respond appropriately to their new milieu such that they fail to migrate or appear to migrate randomly. When trunk neural folds are grafted heterotopically into the head, trunk neural crest cells migrate in a highly disorganized fashion and fail to follow normal cranial neural crest pathways. Importantly, we find incorporation of some trunk cells into branchial arch cartilage despite the random nature of their migration. This is the first demonstration that trunk neural crest cells can form cartilage when transplanted to the head. Our results indicate that, although cranial and trunk neural crest cells have inherent differences in ability to recognize migratory pathways, trunk neural crest can differentiate into cranial cartilage when given proper instructive cues.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


2013 ◽  
Vol 72 (1) ◽  
pp. 1-133 ◽  
Author(s):  
Višnja Besendorfer ◽  
Jelena Mlinarec

Abstract Satellite DNAis a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNAis an important element in genome organization and evolution in plants. Here we study the presence, physical distribution and abundance of the satellite DNAfamily AhTR1 in Anemone. Twenty-two Anemone accessions were analyzed by PCR to assess the presence of AhTR1, while fluorescence in situ hybridization and Southern hybridization were used to determine the abundance and genomic distribution of AhTR1. The AhTR1 repeat unit was PCR-amplified only in eight phylogenetically related European Anemone taxa of the Anemone section. FISH signal with AhTR1 probe was visible only in A. hortensis and A. pavonina, showing localization of AhTR1 in the regions of interstitial heterochromatin in both species. The absence of a FISH signal in the six other taxa as well as weak signal after Southern hybridization suggest that in these species AhTR1 family appears as relict sequences. Thus, the data presented here support the »library hypothesis« for AhTR1 satellite evolution in Anemone. Similar species-specific satellite DNAprofiles in A. hortensis and A. pavonina support the treatment of A. hortensis and A. pavonina as one species, i.e. A. hortensis s.l.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84072 ◽  
Author(s):  
Kunie Hagiwara ◽  
Takeshi Obayashi ◽  
Nobuyuki Sakayori ◽  
Emiko Yamanishi ◽  
Ryuhei Hayashi ◽  
...  

2010 ◽  
Vol 344 (1) ◽  
pp. 531
Author(s):  
Judith A. Cebra-Thomas ◽  
James Robinson ◽  
Melinda Yin ◽  
James McCarthy ◽  
Sonal Shah ◽  
...  

2021 ◽  
Vol 480 ◽  
pp. 78-90
Author(s):  
Jennifer C. Kasemeier-Kulesa ◽  
Jennifer A. Spengler ◽  
Connor E. Muolo ◽  
Jason A. Morrison ◽  
Thomas E. Woolley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document