The role of cyclic GMP in regulating myosin during chemotaxis of Dictyostelium: evidence from a mutant lacking the normal cyclic GMP response to cyclic AMP

1993 ◽  
Vol 106 (2) ◽  
pp. 591-595 ◽  
Author(s):  
G. Liu ◽  
H. Kuwayama ◽  
S. Ishida ◽  
P.C. Newell

Evidence has previously been reported that, during chemotaxis of the cellular slime mould Dictyostelium discoideum, cyclic GMP regulates the association of myosin II with the cytoskeleton and that this regulation is effected by inhibiting myosin II heavy chain phosphorylation (Liu and Newell, J. Cell Sci., 90, 123–129, 1988; 98, 483–490, 1991). Here we provide further evidence in support of this hypothesis using a mutant (KI-10) that is defective in chemotaxis and lacks the normal cyclic AMP-induced cyclic GMP response. We found that the cyclic AMP-induced cytoskeletal actin response was similar to that of the parental strain in this mutant (although showing a slight displacement in the dose-response curve) but the cytoskeletal myosin II heavy chain response was abolished. Moreover, the mutant showed no phosphorylation of myosin II heavy chain in response to cyclic AMP. Compared to the parental strain XP55, the mutant cells contained approximately 40% more protein and their doubling time was 30% longer. These differences could be due to differences in the efficiency of cell division, a process in which the proper regulation of myosin function is essential and in which cyclic GMP may therefore play a role.

1991 ◽  
Vol 98 (4) ◽  
pp. 483-490
Author(s):  
G. Liu ◽  
P.C. Newell

Previous studies have implicated cyclic GMP in the regulation of myosin II heavy chain (MHC) association with the cytoskeleton in Dictyostelium discoideum. Here we provide evidence that cyclic GMP may regulate MHC association with the cytoskeleton through MHC phosphorylation. Comparative data are presented of MHC phosphorylation in the wild-type strain NC4, the parental strain XP55 and streamer mutants NP368 and NP377. Using an anti-MHC monoclonal antibody to immunoprecipitate MHC from [32P]phosphate-labelled developing cells, we found that cyclic AMP stimulation of the wild-type strain NC4 and parental strain XP55 induced MHC phosphorylation in vivo. A peak of phosphorylation was observed at 30–40 s, followed by a gradual decrease to basal level at 160 s. In contrast, in both of the streamer mutants NP368 and NP377 (which have prolonged cyclic GMP accumulation and prolonged MHC association with the cytoskeleton), the phosphorylation of MHC was delayed and did not form a peak until 60–80 s after cyclic AMP stimulation. We also found that cytoskeletal MHC showed only minor phosphorylation, the majority of the phosphorylated MHC being found in the cytosol. We present a model to account for these results in which cyclic GMP regulates MHC association with the cytoskeleton by regulating the phosphorylation/dephosphorylation cycle of MHC in these cells.


1988 ◽  
Vol 90 (1) ◽  
pp. 123-129
Author(s):  
GANG LIU ◽  
PETER C. NEWELL

Amoebae of Dictyostelium discoideum respond to a chemotactic cyclic AMP stimulus within 10 s by the formation of an intracellular peak of cyclic GMP. In wild-type cells the cyclic GMP is rapidly degraded by a cyclic GMP-specific phosphodiesterase. In ‘streamer F’ mutants this enzyme is defective, due to mutation in the enzyme structural gene, and the cyclic GMP persists several times longer than the normal period, an effect that is correlated with a persistence in cell elongation during the chemotactic movement phase. In this study we have used the streamer mutants NP368 and NP377, and their parental strain XP55, to study changes in cytoskeletal proteins during the chemotactic response. We have studied three proteins that change their association with the cytoskeleton after stimulation of amoebae with the chemoattractant cyclic AMP: (1) actin, (2) a protein with an apparent Mr of 190x103 and (3) myosin heavy chain. Both actin and the 190x103Mr protein were found to accumulate rapidly in the cytoskeleton after cyclic AMP stimulation, with a sharp peak at 5 s, and showed similar changes in the parental and streamer mutants. However, the cytoskeletal level of myosin heavy chain showed a different pattern of changes, which also clearly differed in the streamer mutants compared with the parental strain XP55. In XP55 myosin heavy chain showed an initial drop after cyclic AMP stimulation, with a trough at 3–10 s followed by a rapid rise to a sharp peak at 20–25 s. In contrast, the myosin heavy chain in the streamer mutants produced a broad peak that persisted several times longer than the parental strain. We conclude that in the streamer mutants the defect in cyclic GMP phosphodiesterase that produces the broad peak of cyclic GMP is causally correlated with the broad peak of cytoskeletal myosin, and we suggest that this is connected with the observed phenotype of prolonged cell elongation during chemotaxis in these mutants.


1991 ◽  
Vol 99 (1) ◽  
pp. 187-191
Author(s):  
S. Menz ◽  
J. Bumann ◽  
E. Jaworski ◽  
D. Malchow

Previous work has shown that streamer F (stmF) mutants of Dictyostelium discoideum exhibit prolonged chemotactic elongation in aggregation fields. The mutants carry an altered structural gene for cyclic GMP phosphodiesterase resulting in low activities of this enzyme. Chemotactic stimulation by cyclic AMP causes a rapid transient increase in the cyclic GMP concentration followed by association of myosin heavy chains with the cytoskeleton. Both events persist several times longer in stmF mutants than in the parental strain, indicating that the change in association of myosin with the cytoskeleton is transmitted directly or indirectly by cyclic GMP. We measured the cyclic AMP-induced Ca2+ uptake with a Ca(2+)-sensitive electrode and found that Ca2+ uptake was prolonged in stmF mutants but not in the parental strain. The G alpha 2 mutant strain HC33 (fgdA), devoid of InsP3 release and receptor/guanylate cyclase coupling, lacked Ca2+ uptake. However, the latter response and cyclic GMP formation were normal in the signal-relay mutant strain agip 53 where cyclic AMP-stimulated cyclic AMP synthesis is absent. LiCl, which inhibits InsP3 formation in Dictyostelium, blocked Ca2+ uptake in a dose-dependent manner. The data indicate that the receptor-mediated Ca2+ uptake depends on the InsP3 pathway and is regulated by cyclic GMP. The rate of Ca2+ uptake was correlated in time with the association of myosin with the cytoskeleton, suggesting that Ca2+ uptake is involved in the motility response of the cells.


1978 ◽  
Vol 31 (1) ◽  
pp. 233-243
Author(s):  
M. Darmon ◽  
J. Barra ◽  
P. Brachet

The role of cAMP phosphodiesterase in the cAMP-mediated aggregation of the cellular slime mould Dictyostelium discoideum was investigated with a morphogenetic mutant defective in phosphodiesterase production. Mutant cells become capable of aggregating normally when incubated in the presence of exogenous phosphodiesterase isolated from Idictyostelium or rat brain. Direct contact between enzyme and the cell membrane is not required for this phenotypic suppression. The aggregateless character of this strain presumably results from an over-accumulation of cAMP in the extracellular medium since aggregation can be induced in the absence of added phosphodiesterase under conditions facilitating diffusion of the nucleotide. This suggests that phosphodiesterase is not involved in the generation or recognition of cAMP signals, but that the enzyme is essential in the control of the cAMP signal-to-noise ratio.


1979 ◽  
Vol 237 (5) ◽  
pp. C200-C204 ◽  
Author(s):  
D. J. Stewart ◽  
J. Sax ◽  
R. Funk ◽  
A. K. Sen

Stimulation of salt galnd secretion in domestic ducks in vivo increased the cyclic GMP concentration of the tissue, but had no effect on cyclic AMP levels. Methacholine, which is known to stimulate sodium transport by the glands both in vivo and in vitro, stimulated ouabain-sensitive respiration in salt gland slices. Cyclic GMP stimulated ouabain-sensitive respiration to the same extent as methacholine. Guanylate cyclase stimulators, hydroxylamine and sodium azide, also stimulated ouabain-sensitive respiration. The stimulation of ouabain-sensitive respiration by methacholine was blocked either by atropine or by removal of calcium from the incubation medium. The stimulation of ouabain-sensitive respiration by cyclic GMP still occurred in the absence of calcium. The above observations seem to indicate that cyclic GMP acts as a tertiary link in the process of stimulus-secretion coupling in the tissue.


Author(s):  
John W. Phillis

SUMMARY:On the basis of the information presented in this review, it is difficult to reach any firm decision regarding the role of cyclic AMP (or cyclic GMP) in synaptic transmission in the brain. While it is clear that cyclic nucleotide levels can be altered by the exposure of neural tissues to various neurotransmitters, it would be premature to claim that these nucleotides are, or are not, essential to the transmission process in the pre- or postsynaptic components of the synapse. In future experiments with cyclic AMP it will be necessary to consider more critically whether the extracellularly applied nucleotide merely provides a source of adenosine and is thus activating an extracellularly located adenosine receptor, or whether it is actually reaching the hypothetical sites at which it might act as a second messenger. The application of cyclic AMP by intracellular injection techniques should minimize this particular problem, although possibly at the expense of new difficulties. Prior blockade of the adenosine receptor with agents such as theophylline or adenine xylofuranoside may also assist in the categorization of responses to extracellularly applied cyclic AMP as being a result either of activation of the adenosine receptor or of some other mechanism. Ultimately, the development of highly specific inhibitors for adenylate cyclase should provide a firm basis from which to draw conclusions about the role of cyclic AMP in synaptic transmission. Similar considerations apply to the actions of cyclic GMP and the role of its synthesizing enzyme, guanylale cyclase.The use of phosphodiesterase inhibitors in studies on cyclic nucleotides must also be approached with caution. The diverse actions of many of these compounds, which include calcium mobilization and block of adenosine uptake, could account for many of the results that have been reported in the literature.


1995 ◽  
Vol 15 (6) ◽  
pp. 445-462 ◽  
Author(s):  
Peter C. Newell

This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis of Dictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.


Sign in / Sign up

Export Citation Format

Share Document