Branching morphogenesis of human mammary epithelial cells in collagen gels

1994 ◽  
Vol 107 (12) ◽  
pp. 3557-3568 ◽  
Author(s):  
F. Berdichevsky ◽  
D. Alford ◽  
B. D'Souza ◽  
J. Taylor-Papadimitriou

To study the morphogenesis of human epithelial cells in vitro we have used a three-dimensional collagen matrix and a newly developed mammary epithelial cell line, 1–7 HB2. In standard medium 1–7 HB2 cells formed compact balls/spheres inside collagen type I gels, while cocultivation with various fibroblast cell lines or growth in fibroblast-conditioned media resulted in the appearance of branching structures. At least two different soluble factors secreted by fibroblasts were found to be implicated in the branching morphogenesis. Firstly, hepatocyte growth factor/scatter factor could induce branching in a concentration-dependent manner. Moreover, a polyclonal serum against hepatocyte growth factor/scatter factor completely inhibited the branching morphogenesis induced by medium conditioned by MRC-5 fibroblast cells. In contrast, a morphogenetic activity secreted by human foreskin fibroblasts was identified that appears to be different from hepatocyte growth factor/scatter factor and from a number of other well-characterized growth factors or cytokines. This model system has been used to examine the role of integrins in mammary morphogenesis. The expression of the alpha 2 beta 1, alpha 3 beta 1 and alpha 6 beta 4 integrins was decreased when cells were plated on collagen gels. The addition of specific blocking monoclonal antibodies directed to the alpha 2- and beta 1-integrin subunits to growth media impaired cell-cell interactions and interfered with the formation of compact structures inside collagen gels, suggesting that the alpha 2 beta 1 integrin can control intercellular adhesion in mammary morphogenesis. In contrast one of the blocking monoclonal antibodies against the alpha 3-integrin subunit (P1B5) mimicked the effect of soluble ‘morphogens’. Our results suggest that the modulation of alpha 3 beta 1 activity may represent an important event in the induction of branching morphogenesis of human mammary epithelial cells.

1995 ◽  
Vol 131 (6) ◽  
pp. 1573-1586 ◽  
Author(s):  
V Brinkmann ◽  
H Foroutan ◽  
M Sachs ◽  
K M Weidner ◽  
W Birchmeier

Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three-dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well-developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end-buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis.


1998 ◽  
Vol 140 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Yohei Hirai ◽  
André Lochter ◽  
Sybille Galosy ◽  
Shogo Koshida ◽  
Shinichiro Niwa ◽  
...  

Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.


2001 ◽  
Vol 159 (2) ◽  
pp. 579-590 ◽  
Author(s):  
Glenn A. Gmyrek ◽  
Marc Walburg ◽  
Craig P. Webb ◽  
Hsiao-Man Yu ◽  
Xueke You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document