Distinct subunit functions and cell cycle regulated phosphorylation of 20S APC/cyclosome required for anaphase in fission yeast

1997 ◽  
Vol 110 (15) ◽  
pp. 1793-1804 ◽  
Author(s):  
H. Yamada ◽  
K. Kumada ◽  
M. Yanagida

We show here that the fission yeast gene products Cut9 and Nuc2 are the subunits of the 20S complex, the putative APC (anaphase promoting complex)/cyclosome which contains ubiquitin ligase activity required for cyclin and Cut2 destruction. The assembly of Cut9 into the 20S complex requires functional Nuc2, and vice versa. The size of fission yeast APC/cyclosome is similar to that of higher eukaryotes, but differs greatly from that (36S) of budding yeast. The 20S complex is present in cells arrested at different stages of the cell cycle, and becomes slightly heavier in mitosis than interphase. Cut9 in the 20S complex is hyperphosphorylated specifically at the time of metaphase. The truncated forms of Cut9 block entry into mitosis, however. The 20S assembly impaired in the cut9 mutant can be restored by elevating the level of a novel gene product Hcnl, similar to budding yeast Cdc26. Furthermore, deletion of protein kinase PKA (Pkal) suppresses the phenotype of the cut9 mutation and reduces phosphorylation of Cut9. In contrast, PP1 (Dis2) phosphatase mutation shows the reverse effect on the phenotype of cut9. The Cut9 subunit is likely to be a target for regulating APC/ cyclosome function through protein-protein interactions and phosphorylation.

2004 ◽  
Vol 24 (8) ◽  
pp. 3562-3576 ◽  
Author(s):  
Martin Schwickart ◽  
Jan Havlis ◽  
Bianca Habermann ◽  
Aliona Bogdanova ◽  
Alain Camasses ◽  
...  

ABSTRACT The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.


2008 ◽  
Vol 28 (15) ◽  
pp. 4653-4664 ◽  
Author(s):  
Denis Ostapenko ◽  
Janet L. Burton ◽  
Ruiwen Wang ◽  
Mark J. Solomon

ABSTRACT The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.


2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2011 ◽  
Vol 83 (2) ◽  
pp. 627-635 ◽  
Author(s):  
Colette Dissous ◽  
Christoph G Grevelding ◽  
Thavy Long

Polo-like kinases are important regulators of cell cycle progression and mitosis. They constitute a family of conserved serine/threonine kinases which are highly related in their catalytic domains and contain polo boxes involved in protein-protein interactions and subcellular localization. In mammals, five Plks (Plk 1-5) encompass diverse roles in centrosome dynamics, spindle formation, intra S-phase and G2/M checkpoints and DNA damage response. Plk1 is a key positive regulator of mitosis and is overexpressed in various types of cancers. Plk4 is a divergent member of the Plk family, with essential functions in centriole duplication. Homozygous disruption of Plk1 or Plk4 in mice is lethal in embryos. Two Plk members SmPlk1 and SmSak, homologous to Plk1 and Plk4 respectively, are present in the parasitic platyhelminth Schistosoma mansoni. Structural and functional analyses of SmPlk1 have demonstrated its conserved function in the regulation of cell cycle G2/M transition in Xenopus oocytes. The anti-cancer drug BI 2536 (the most potent and selective Plk1 inhibitor) inhibits specifically the catalytic activity of SmPlk1 and induced profound alterations in schistosome gonads, indicating a role of SmPlk1 in parasite gametogenesis and its potential as a novel chemotherapeutic target against schistosomiasis. Functions of SmSak in cell cycle regulation and schistosome gonad development are currently investigated


1996 ◽  
Vol 109 (12) ◽  
pp. 2865-2874 ◽  
Author(s):  
H. Bastians ◽  
H. Ponstingl

We identified a novel human protein serine/threonine phosphatase cDNA, designated protein phosphatase 6 (PP6) by using a homology-based polymerase chain reaction. The predicted amino acid sequence indicates a 35 kDa protein showing high homology to other protein phosphatases including human PP2A (57%), human PP4 (59%), rat PPV (98%), Drosophila PPV (74%), Schizosaccharomyces pombe ppe1 (68%) and Saccharomyces cerevisiae Sit4p (61%). In human cells, three forms of PP6 mRNA were found with highest levels of expression in testis, heart and skeletal muscle. The PP6 protein was detected in lysates of human heart muscle and in bull testis. Complementation studies using a temperature sensitive mutant strain of S. cerevisiae SIT4, which is required for the G1 to S transition of the cell cycle, showed that PP6 can rescue the mutant growth arrest. In addition, a loss of function mutant of S. pombe ppe1, described as a gene interacting with the pim1/spi1 mitotic checkpoint and involved in cell shape control, can be complemented by expression of human PP6. These data indicate that human PP6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, implying a function of PP6 in cell cycle regulation.


2019 ◽  
Vol 47 (19) ◽  
pp. 10166-10180 ◽  
Author(s):  
Ryo Kariyazono ◽  
Arisa Oda ◽  
Takatomi Yamada ◽  
Kunihiro Ohta

Abstract HORMA domain-containing proteins such as Hop1 play crucial regulatory roles in various chromosomal functions. Here, we investigated roles of the fission yeast Hop1 in the formation of recombination-initiating meiotic DNA double strand breaks (DSBs). Meiotic DSB formation in fission yeast relies on multiple protein-protein interactions such as the one between the chromosome axial protein Rec10 and the DSB-forming complex subunit Rec15. Chromatin immunoprecipitation sequencing demonstrated that Hop1 is colocalized with both Rec10 and Rec15, and we observed physical interactions of Hop1 to Rec15 and Rec10. These results suggest that Hop1 promotes DSB formation by interacting with both axis components and the DSB-forming complex. We also show that Hop1 binding to DSB hotspots requires Rec15 and Rec10, while Hop1 axis binding requires Rec10 only, suggesting that Hop1 is recruited to the axis via Rec10, and to hotspots by hotspot-bound Rec15. Furthermore, we introduced separation-of-function Rec10 mutations, deficient for interaction with either Rec15 or Hop1. These single mutations and hop1Δ conferred only partial defects in meiotic recombination, while the combining the Rec15-binding-deficient rec10 mutation with hop1Δ synergistically reduced meiotic recombination, at least at a model hotspot. Taken together, Hop1 likely functions as a stabilizer for Rec15–Rec10 interaction to promote DSB formation.


2012 ◽  
Vol 26 (5) ◽  
pp. 2164-2174 ◽  
Author(s):  
Jonathan Fillatre ◽  
Delphine Delacour ◽  
Lucie Van Hove ◽  
Thomas Bagarre ◽  
Nathalie Houssin ◽  
...  

1999 ◽  
Vol 354 (1389) ◽  
pp. 1551-1557 ◽  
Author(s):  
Takashi Toda ◽  
Itziar Ochotorena ◽  
Kin-ichiro Kominami

The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCF Pop1/Pop1 , SCF Pop1/Pop2 and SCF Pop2/Pop2 , appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.


Sign in / Sign up

Export Citation Format

Share Document