scholarly journals Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles

1997 ◽  
Vol 110 (18) ◽  
pp. 2155-2164 ◽  
Author(s):  
E. Ikonen ◽  
J.B. de Almeid ◽  
K.R. Fath ◽  
D.R. Burgess ◽  
K. Ashman ◽  
...  

A variety of peripheral membrane proteins associate dynamically with Golgi membranes during the budding and trafficking of transport vesicles in eukaryotic cells. A monoclonal antibody (AD7) raised against Golgi membranes recognizes a peripheral membrane protein, p200, which associates with vesicles budding off the trans-Golgi network (TGN). Based on preliminary findings, a potential association between p200 and myosin on Golgi membranes was investigated. Immunofluorescence staining of cultured cells under a variety of fixation conditions was carried out using an antibody raised against chick brush border nonmuscle myosin II. We show that, in addition to being found in the cytoplasm or associated with stress fibres, nonmuscle myosin II is also specifically localized on Golgi membranes. Myosin II was also detected on Golgi membranes by immunoblotting and by immunogold labeling at the electron microscopy level where it was found to be concentrated on Golgi-derived vesicles. The association of myosin II with Golgi membranes is dynamic and was found to be enhanced following activation of G proteins. Myosin II staining of Golgi membranes was also disrupted by brefeldin A (BFA). Colocalization of the AD7 and myosin II antibodies at the light and electron microscopy levels led us to investigate the nature of the 200 kDa protein recognized by both antibodies. The 200 kDa protein immunoprecipiated by the AD7 antibody was isolated from MDCK cells and used for microsequencing. Amino acid sequence data enabled us to identify p200 as the heavy chain of nonmuscle myosin IIA. In addition, an extra protein (240 kDa) recognized by the AD7 antibody specifically in extracts of HeLa cells, was sequenced and identified as another actin-binding protein, filamin. These results show that nonmuscle myosin II is associated with Golgi membranes and that the vesicle-associated protein p200, is itself a heavy chain of myosin II.

2007 ◽  
Vol 18 (3) ◽  
pp. 1009-1017 ◽  
Author(s):  
Masaaki K. Sato ◽  
Masayuki Takahashi ◽  
Michio Yazawa

To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing appropriate myosin IIB rod fragments. We expressed the C-terminal 305-residue rod fragment of the myosin IIB heavy chain (BRF305) in MRC-5 SV1 TG1 cells. As a result, unstable morphology was observed like MHC-IIB−/− fibroblasts. This phenotype was not observed in cells expressing BRF305 mutants: 1) with a defect in assembling, 2) lacking N-terminal 57 residues (N-57), or 3) lacking C-terminal 63 residues (C-63). A myosin IIA rod fragment ARF296 corresponding to BRF305 was not effective. However, the chimeric ARF296, in which the N-57 and C-63 of BRF305 were substituted for the corresponding regions of ARF296, acquired the ability to induce unstable morphology. We propose that the N-57 and C-63 of BRF305 are involved in self-recognition when myosin IIB molecules assemble into homo-filament.


Biochemistry ◽  
2001 ◽  
Vol 40 (30) ◽  
pp. 8887-8897 ◽  
Author(s):  
Myung-Chul Chung ◽  
Hyung-Kwoun Kim ◽  
Sachiyo Kawamoto

1994 ◽  
Vol 127 (5) ◽  
pp. 1361-1373 ◽  
Author(s):  
D Strand ◽  
R Jakobs ◽  
G Merdes ◽  
B Neumann ◽  
A Kalmes ◽  
...  

Inactivation of the Drosophila lethal(2)giant larvae (l(2)gl) gene causes malignant tumors in the brain and the imaginal discs and produces developmental abnormalities in other tissues, including the germline, the ring gland and the salivary glands. Our investigations into the l(2)gl function have revealed that the gene product, or p127 protein, acts as a cytoskeletal protein distributed in both the cytoplasm and on the inner face of lateral cell membranes in a number of tissues throughout development. To determine whether p127 can form oligomers or can stably interact with other proteins we have analyzed the structure of the cytosolic form of p127. Using gel filtration and immunoaffinity chromatography we found that p127 is consistently recovered as high molecular weight complexes that contain predominantly p127 and at least ten additional proteins. Blot overlay assays indicated that p127 can form homo-oligomers and the use of a series of chimaeric proteins made of segments of p127 fused to protein A, which alone behaves as a monomer, showed that p127 contains at least three distinct domains contributing to its homo-oligomerization. Among the proteins separated from the immuno-purified p127 complexes or isolated by virtue of their affinity to p127, we identified one of the proteins by microsequencing as nonmuscle myosin II heavy chain. Further blot overlay assay showed that p127 can directly interact with nonmuscle myosin II. These findings confirm that p127 is a component of a cytoskeletal network including myosin and suggest that the neoplastic transformation resulting from l(2)gl gene inactivation may be caused by the partial disruption of this network.


2001 ◽  
Vol 433 (1) ◽  
pp. 62-74 ◽  
Author(s):  
Antonella N. Tullio ◽  
Paul C. Bridgman ◽  
Nancy J. Tresser ◽  
Chi-Chao Chan ◽  
Mary Anne Conti ◽  
...  

1995 ◽  
Vol 121 (S1) ◽  
pp. A67-A67
Author(s):  
Gunter Merdes ◽  
Rainer Jakobs ◽  
Beate Neumann ◽  
Zuo Wei Su ◽  
Daniel P. Kiehart ◽  
...  

1997 ◽  
Vol 138 (2) ◽  
pp. 291-306 ◽  
Author(s):  
Anne Müsch ◽  
David Cohen ◽  
Enrique Rodriguez-Boulan

The participation of nonmuscle myosins in the transport of organelles and vesicular carriers along actin filaments has been documented. In contrast, there is no evidence for the involvement of myosins in the production of vesicles involved in membrane traffic. Here we show that the putative TGN coat protein p200 (Narula, N., I. McMorrow, G. Plopper, J. Doherty, K.S. Matlin, B. Burke, and J.L. Stow. 1992. J. Cell Biol. 114: 1113–1124) is myosin II. The recruitment of myosin II to Golgi membranes is dependent on actin and is regulated by G proteins. Using an assay that studies the release of transport vesicles from the TGN in vitro, we provide functional evidence that p200/myosin is involved in the assembly of basolateral transport vesicles carrying vesicular stomatitis virus G protein (VSVG) from the TGN of polarized MDCK cells. The 50% reduced efficiency in VSVG vesicle release from the TGN in vitro after depletion of p200/myosin II could be reestablished to control levels by the addition of purified nonmuscle myosin II. Several inhibitors of the actin-stimulated ATPase activity of myosin specifically inhibited the release of VSVG-containing vesicles from the TGN.


2005 ◽  
Vol 16 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Aaron F. Straight ◽  
Christine M. Field ◽  
Timothy J. Mitchison

We demonstrate that the contractile ring protein anillin interacts directly with nonmuscle myosin II and that this interaction is regulated by myosin light chain phosphorylation. We show that despite their interaction, anillin and myosin II are independently targeted to the contractile ring. Depletion of anillin in Drosophila or human cultured cells results in cytokinesis failure. Human cells depleted for anillin fail to properly regulate contraction by myosin II late in cytokinesis and fail in abscission. We propose a role for anillin in spatially regulating the contractile activity of myosin II during cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document