scholarly journals Increased degranulation and phospholipase A2, C, and D activity in RBL cells stimulated through FcepsilonR1 is due to spreading and not simply adhesion

1997 ◽  
Vol 110 (6) ◽  
pp. 771-780 ◽  
Author(s):  
J.R. Apgar

Rat basophilic leukemia cells will adhere to and spread out on fibronectin coated surfaces in an integrin dependent manner. Adhesion and spreading on fibronectin leads to increased degranulation, inositol phosphate production, phospholipase D activation, and increased production of prostaglandin D2 and leukotriene C4 when the cells are activated through the high affinity IgE receptor. Rat basophilic leukemia cells will also adhere to surfaces coated with anti-rat class I antibodies, poly-L-lysine, and a lectin purified from Tetragonolobus purpureas. In all cases, antigen activated cells, which were adherent, displayed increased signaling, degranulation and eicosanoid production as compared to cells which were non-adherent. Cells which adhere to either anti-rat class I antibodies or poly-L-lysine also spread even though this is not mediated through integrins. In contrast, adhesion to the lectin from Tetragonolobus did not cause any appreciable spreading unless the cells were also triggered through the IgE receptor. Cells were also able to bind to fibronectin immobilized on polystyrene beads which mimics adhesion but does not allow spreading. However, these cells exhibited no increased signaling, degranulation, or eicosanoid production. Furthermore, rat basophilic leukemia cells can be modified by incubating them in the presence of biotinylated-phosphatidylserine which becomes incorporated into the membrane. These modified cells will adhere to streptavidin coated plates while unmodified cells will not. However, these modified cells do not spread, even after activation with antigen, and they show no increased degranulation or production of eicosanoids. These results indicate that adhesion itself is not sufficient for upregulation of the cells in response to antigen and that spreading of the cells may be the critical component.

Author(s):  
R.F. Stump ◽  
J.R. Pfeiffer ◽  
JC. Seagrave ◽  
D. Huskisson ◽  
J.M. Oliver

In RBL-2H3 rat basophilic leukemia cells, antigen binding to cell surface IgE-receptor complexes stimulates the release of inflammatory mediators and initiates a series of membrane and cytoskeletal events including a transformation of the cell surface from a microvillous to a lamellar topography. It is likely that dynamic properties of the IgE receptor contribute to the activation of these responses. Fewtrell and Metzger have established that limited crosslinking of IgE-receptor complexes is essential to trigger secretion. In addition, Baird and colleagues have reported that antigen binding causes a rapid immobilization of IgE-receptor complexes, and we have demonstrated an apparent increase with time in the affinity of IgE-receptor complexes for antigen.


1986 ◽  
Vol 102 (2) ◽  
pp. 541-550 ◽  
Author(s):  
A K Menon ◽  
D Holowka ◽  
W W Webb ◽  
B Baird

Controlled cross-linking of IgE-receptor complexes on the surface of rat basophilic leukemia cells and mast cells has allowed a comparison of the lateral mobility and cell triggering activity of monomers, dimers, and higher oligomers of receptors. Addition of a monoclonal anti-IgE(Fc) antibody to IgE-sensitized cells in stoichiometric amounts relative to IgE produces IgE-receptor dimers with high efficiency. These dimers are nearly as mobile as IgE-receptor monomers and trigger cellular degranulation poorly, but in the presence of 30% D2O, substantial immobilization of the dimers is seen and degranulation activity doubles. Addition of this monoclonal antibody in larger amounts results in the formation of larger oligomeric receptor clusters which are immobile and effectively trigger the cells. Thus, small receptor clusters that are active in stimulating degranulation are immobilized in a process that is not anticipated by simple hydrodynamic theories. Further experiments involving cross-linking of receptor-bound IgE by multivalent antigen demonstrate that immobilization of receptors occurs rapidly (less than 2 min) upon cross-linking and is fully and rapidly reversible by the addition of excess monovalent hapten. The rapidity and reversibility of the immobilization process are entirely consistent with the possibility that immobilization represents a recognition event between clustered receptors and cytoskeleton-associated components that plays an important role early in the cell triggering mechanism.


Sign in / Sign up

Export Citation Format

Share Document