The distribution of antigen on the surface of RBL-2H3 rat basophilic leukemia cells observed by back-scattered electron imaging

Author(s):  
R.F. Stump ◽  
J.R. Pfeiffer ◽  
JC. Seagrave ◽  
D. Huskisson ◽  
J.M. Oliver

In RBL-2H3 rat basophilic leukemia cells, antigen binding to cell surface IgE-receptor complexes stimulates the release of inflammatory mediators and initiates a series of membrane and cytoskeletal events including a transformation of the cell surface from a microvillous to a lamellar topography. It is likely that dynamic properties of the IgE receptor contribute to the activation of these responses. Fewtrell and Metzger have established that limited crosslinking of IgE-receptor complexes is essential to trigger secretion. In addition, Baird and colleagues have reported that antigen binding causes a rapid immobilization of IgE-receptor complexes, and we have demonstrated an apparent increase with time in the affinity of IgE-receptor complexes for antigen.

1985 ◽  
Vol 101 (6) ◽  
pp. 2156-2166 ◽  
Author(s):  
J M Oliver ◽  
J C Seagrave ◽  
J R Pfeiffer ◽  
M L Feibig ◽  
G G Deanin

At the entry into mitosis, cells abruptly lose membrane activities such as phagocytosis, pinocytosis, and capping. The present studies test if mitotic cells also resist functional responses to cell surface ligand-receptor interactions. The IgE receptors of RBL-2H3 rat basophilic leukemia cells were labeled with anti-dinitrophenol IgE (anti-DNP-IgE) and then cross-linked with multivalent ligands (DNP-bovine serum albumin [BSA]; DNP-B-phycoerythrin; DNP-BSA-gold). IgE-receptor cross-linking modulates cell surface organization and function and releases serotonin and other mediators of allergic and asthmatic reactions from interphase cells (Pfeiffer, J. R., JC. Seagrave, B. H. Davis, G. G. Deanin, and J. M. Oliver, 1985, J. Cell Biol., 101:2145-2155). It was found that anti-DNP-IgE-receptor complexes are preserved on the cell surface throughout mitosis; they continue to bind DNP-proteins, and the resulting antigen-IgE-receptor complexes can redistribute to coated pits on the cell surface. Furthermore, there is no loss of [3H]serotonin through mitosis. Nevertheless, antigen-stimulated [3H]-serotonin release is strongly impaired in mitotic-enriched as compared with mixed interphase or G1-enriched cell populations. In addition, antigen binding transforms the surface of interphase cells from a microvillous to a plicated topography and stimulates the uptake of fluorescein isothiocyanate-conjugated dextran by fluid pinocytosis. Mitotic cells maintain a microvillous surface topography after antigen treatment, and fluid pinocytosis virtually ceases from prometaphase to telophase. Phorbol myristate acetate, a tumor promoter that activates protein kinase C, restores surface ruffling activity to mitotic cells. Thus, the mitosis-specific freezing of membrane and secretory responses is most likely due to the failure of transmembrane signaling.


1985 ◽  
Vol 101 (6) ◽  
pp. 2145-2155 ◽  
Author(s):  
J R Pfeiffer ◽  
J C Seagrave ◽  
B H Davis ◽  
G G Deanin ◽  
J M Oliver

Binding of antigen to IgE-receptor complexes on the surface of RBL-2H3 rat basophilic leukemia cells is the first event leading to the release of cellular serotonin, histamine, and other mediators of allergic, asthmatic, and inflammatory responses. We have used dinitrophenol-conjugated bovine serum albumin (DNP-BSA) as well as the fluorescent antigen, DNP-B-phycoerythrin, and the electron-dense antigen, DNP-BSA-gold, to investigate dynamic membrane and cytoskeletal events associated with the release of [3H]serotonin from anti-DNP-IgE-primed RBL-2H3 cells. These multivalent antigens bind rapidly to cell surface IgE-receptor complexes. Their distribution is initially uniform, but within 2 min DNP-BSA-gold is found in coated pits and is subsequently internalized. Antigen internalization occurs in the presence and absence of extracellular Ca2+. The F-actin content of the detergent-extracted cell matrices analyzed by SDS PAGE decreases during the first 10-30 s of antigen binding and then increases by 1 min to almost double the control levels. A rapid and sustained increase is also observed when total F-actin is quantified by flow cytometry after binding of rhodamine-phalloidin. The antigen-stimulated increase in F-actin coincides with (and may cause) the transformation of the cell surface from a finely microvillous to a highly folded or plicated topography. Other early membrane responses include increased cell spreading and a 2-3-fold increase in the uptake of fluorescein-dextran by fluid pinocytosis. The surface and F-actin changes show the same dependence on DNP-protein concentration as stimulated [3H]serotonin release; and both the membrane responses and the release of mediators are terminated by the addition of the non-cross-linking monovalent ligand, DNP-lysine. These data indicate that the same antigen-stimulated transduction pathway controls both the membrane/cytoskeletal and secretory events. However, the membrane and actin responses to IgE-receptor cross-linking are independent of extracellular Ca2+ and are mimicked by phorbol myristate acetate, whereas ligand-dependent mediator release depends on extracellular Ca2+ and is mimicked by the Ca2+ ionophore A23187.


1986 ◽  
Vol 102 (2) ◽  
pp. 541-550 ◽  
Author(s):  
A K Menon ◽  
D Holowka ◽  
W W Webb ◽  
B Baird

Controlled cross-linking of IgE-receptor complexes on the surface of rat basophilic leukemia cells and mast cells has allowed a comparison of the lateral mobility and cell triggering activity of monomers, dimers, and higher oligomers of receptors. Addition of a monoclonal anti-IgE(Fc) antibody to IgE-sensitized cells in stoichiometric amounts relative to IgE produces IgE-receptor dimers with high efficiency. These dimers are nearly as mobile as IgE-receptor monomers and trigger cellular degranulation poorly, but in the presence of 30% D2O, substantial immobilization of the dimers is seen and degranulation activity doubles. Addition of this monoclonal antibody in larger amounts results in the formation of larger oligomeric receptor clusters which are immobile and effectively trigger the cells. Thus, small receptor clusters that are active in stimulating degranulation are immobilized in a process that is not anticipated by simple hydrodynamic theories. Further experiments involving cross-linking of receptor-bound IgE by multivalent antigen demonstrate that immobilization of receptors occurs rapidly (less than 2 min) upon cross-linking and is fully and rapidly reversible by the addition of excess monovalent hapten. The rapidity and reversibility of the immobilization process are entirely consistent with the possibility that immobilization represents a recognition event between clustered receptors and cytoskeleton-associated components that plays an important role early in the cell triggering mechanism.


1988 ◽  
Vol 107 (3) ◽  
pp. 969-980 ◽  
Author(s):  
P M Kane ◽  
D Holowka ◽  
B Baird

We have examined the effect of cross-linking IgE-receptor complexes with variable receptor-receptor distances on the transmembrane signaling that leads to degranulation of rat basophilic leukemia cells. Linear polymers of the biotin-binding protein avidin were generated with bis biotin-1,12-diamidododecane, and a dinitrophenyl-biotin conjugate was bound at each end of the polymers to form a series of rigid bivalent haptens of well-defined length. The polymers were fractionated by size with nondenaturing PAGE, electro-eluted, and tested for their ability to stimulate degranulation of rat basophilic leukemia cells sensitized with anti-DNP IgE. We found that hexamers of avidin (of length greater than or equal to 240 A) were as effective in triggering degranulation as dimers (of length approximately 80 A), while the monomeric avidin antigen (of length approximately 40 A) elicited a poorer degranulation response from the cells. The mechanism by which aggregation of cell surface receptors can initiate signal transduction is discussed in light of these results.


Biochemistry ◽  
1992 ◽  
Vol 31 (23) ◽  
pp. 5350-5356 ◽  
Author(s):  
Richard G. Posner ◽  
Benjamin Lee ◽  
Daniel H. Conrad ◽  
David Holowka ◽  
Barbara Baird ◽  
...  

Author(s):  
J.R. Pfeiffer ◽  
J.C. Seagrave ◽  
C. Wofsy ◽  
J.M. Oliver

In RBL-2H3 rat leukemic mast cells, crosslinking IgE-receptor complexes with anti-IgE antibody leads to degranulation. Receptor crosslinking also stimulates the redistribution of receptors on the cell surface, a process that can be observed by labeling the anti-IgE with 15 nm protein A-gold particles as described in Stump et al. (1989), followed by back-scattered electron imaging (BEI) in the scanning electron microscope. We report that anti-IgE binding stimulates the redistribution of IgE-receptor complexes at 37“C from a dispersed topography (singlets and doublets; S/D) to distributions dominated sequentially by short chains, small clusters and large aggregates of crosslinked receptors. These patterns can be observed (Figure 1), quantified (Figure 2) and analyzed statistically. Cells incubated with 1 μg/ml anti-IgE, a concentration that stimulates maximum net secretion, redistribute receptors as far as chains and small clusters during a 15 min incubation period. At 3 and 10 μg/ml anti-IgE, net secretion is reduced and the majority of receptors redistribute rapidly into clusters and large aggregates.


Sign in / Sign up

Export Citation Format

Share Document