Unidirectional movement of fluorescent microtubules on rows of dynein arms of disintegrated axonemes

1998 ◽  
Vol 111 (1) ◽  
pp. 93-98 ◽  
Author(s):  
A. Yamada ◽  
T. Yamaga ◽  
H. Sakakibara ◽  
H. Nakayama ◽  
K. Oiwa

Tetramethylrhodamine-labelled microtubules were observed to move on rows of dynein arms of sea urchin sperm axonemes exposed by elastase-induced sliding disintegration. The microtubules moved towards the flagellar tip at a velocity of 3.1+/−2.1 microm second-1 (mean +/− s.d., n=53) in the presence of 0.1 mM ATP at 22 degrees C, but none moved towards the sperm head. We also examined the polarity of microtubule binding to axonemal doublet microtubules in the absence of ATP by using microtubules brightly labelled at their minus-ends. In 140 of 210 microtubules studied, they bound to axonemal microtubules with a parallel polarity. These results suggest that tightly packed dynein arms on the outer doublet microtubules of sperm axoneme preferentially bind microtubules to themselves with the same polarity as that of the axoneme and that they generate a force to move only these microtubules in the direction away from the sperm head.

1977 ◽  
Vol 73 (1) ◽  
pp. 182-192 ◽  
Author(s):  
K Ogawa ◽  
D J Asai ◽  
C J Brokaw

Effects of an antiserum against native dynein 1 from sperm flagella of the sea urchin Strongylocentrotus purpuratus were compared with effects of an antiserum previously obtained against an ATPase-active tryptic fragment (fragment 1A) of dynein 1 from sperm flagella of the sea urchin, Anthocidaris crassispina. Both antisera precipitate dynein 1 and do not precipitate dynein 2. Only the fragment 1A antiserum precipitates fragment 1A and produces a measurable inhibition of dynein 1 ATPase activity. Both antisera inhibit the movement and the movement-coupled ATP dephosphorylation of reactivated spermatozoa. The inhibition of movement by the antiserum against dynein 1 is much less than by the antiserum against fragment 1A, suggesting that a specific interference with the active ATPase site may be required for effective inhibition of movement. Both antisera reduce the bend angle as well as the beat frequency of reactivated S. purpuratus spermatozoa, suggesting that the bend angle may depend on the activity of the dynein arms which generate active sliding.


1988 ◽  
Vol 944 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jesus García-Soto ◽  
Marisabel Mourelle ◽  
Irma Vargas ◽  
Lucía de De la Torre ◽  
Estanislao Ramírez ◽  
...  

1996 ◽  
Vol 109 (12) ◽  
pp. 2833-2842 ◽  
Author(s):  
S. Ishijima ◽  
M. Kubo-Irie ◽  
H. Mohri ◽  
Y. Hamaguchi

Active sliding between doublet microtubules of sea urchin sperm axonemes that were demembranated with Triton X-100 in the presence or absence of calcium was induced with ATP and elastase at various concentrations of Ca2+ to examine the effects of Ca2+ on the direction of the power stroke of the dynein arms. Dark-field light microscopy of microtubule sliding revealed that the sliding from the axonemes demembranated with Triton and millimolar calcium and disintegrated with ATP and elastase showed various patterns of sliding disintegration, including loops of doublet microtubules formed near the head or the basal body. These loops were often thicker than the remaining axonemal bundle. In contrast, only thinner loops were found from the axonemes demembranated with Triton in the absence of calcium and disintegrated with ATP and elastase at high Ca2+ concentrations. Electron microscopic examination of the direction of microtubule sliding showed that the doublet microtubules in the axonemes demembranated in the presence of millimolar calcium moved toward the base of the axonemes by the dynein arms on the adjacent doublet microtubule as well as by their own dynein arms. Doublet microtubules in the axonemes demembranated in the absence of calcium moved toward the base of the axonemes only by their own dynein arms. Similar observations have been obtained from the axonemes from which the outer dynein arms were selectively extracted. From these observations, we can conclude that the dynein arms generate force in both directions and this feature of the dynein arms arises from at least the inner dynein arms.


1973 ◽  
Vol 13 (2) ◽  
pp. 337-357 ◽  
Author(s):  
BARBARA H. GIBBONS ◽  
I. R. GIBBONS

Sea-urchin sperm were extracted with o.5 M KCl for 45 s at room temperature in the presence of Triton X-100, and then transferred to reactivating solution containing 1 mM ATP. The flagellar beat frequency of these KCl-extracted sperm (16 beats/s) was only about half that of control Triton-extracted sperm that had not been exposed to 0.5 M KCl (31 beats/s), although the form of their bending waves was not significantly altered. Examination by electron microscopy showed that the extraction with 0.5 M KCl removed the majority of the outer arms from the doublet tubules, leaving the inner arms apparently intact. By varying the duration of the KCl-extraction, it was shown that the rate of decrease in beat frequency paralleled the rate of disappearance of the arms. Prolonging the extraction time beyond 45 s at room temperature, or 4 min at o °C, had little further effect on beat frequency. ATPase measurements suggested that 6o-65% of the dynein in the original axonemes had been solubilized when the extraction with KCl was permitted to go to completion. These results indicate that the generation and propagation of flagellar bending waves of essentially typical form are not prevented by the removal of the outer row of dynein arms from the doublet tubules. In terms of the sliding filament model of flagellar bending, the results suggest that the rate of sliding between tubules under these conditions is proportional to the number of dynein arms present. The lack of significant change in wave form implies that the total amount of sliding that occurs during each bending cycle is not affected by the reduced number of dynein arms, but is regulated independently in some manner by the elastic forces generated by other structures in the bent axoneme.


1992 ◽  
Vol 118 (5) ◽  
pp. 1189-1200 ◽  
Author(s):  
A G Moss ◽  
W S Sale ◽  
L A Fox ◽  
G B Witman

Glass-adsorbed intact sea urchin outer arm dynein and its beta/IC1 subunit supports movement of microtubules, yet does not form a rigor complex upon depletion of ATP (16). We show here that rigor is a feature of the isolated intact outer arm, and that this property subfractionates with its alpha heavy chain. Intact dynein mediates the formation of ATP-sensitive microtubule bundles, as does the purified alpha heavy chain, indicating that both particles are capable of binding to microtubules in an ATP-sensitive manner. In contrast, the beta/IC1 subunit does not bundle microtubules. Bundles formed with intact dynein are composed of ribbon-like sheets of parallel microtubules that are separated by 54 nm (center-to-center) and display the same longitudinal repeat (24 nm) and cross-sectional geometry of dynein arms as do outer doublets in situ. Bundles formed by the alpha heavy chain are composed of microtubules with a center-to-center spacing of 43 nm and display infrequent, fine crossbridges. In contrast to the bridges formed by the intact arm, the links formed by the alpha subunit are irregularly spaced, suggesting that binding of the alpha heavy chain to the microtubules is not cooperative. Cosedimentation studies showed that: (a) some of the intact dynein binds in an ATP-dependent manner and some binds in an ATP-independent manner; (b) the beta/IC1 subunit does not cosediment with microtubules under any conditions; and (c) the alpha heavy chain cosediments with microtubules in the absence or presence of MgATP2-. These results suggest that the structural binding observed in the intact arm also is a property of its alpha heavy chain. We conclude that whereas force-generation is a function of the beta/IC1 subunit, both structural and ATP-sensitive (rigor) binding of the arm to the microtubule are mediated by the alpha subunit.


1985 ◽  
Vol 101 (4) ◽  
pp. 1400-1412 ◽  
Author(s):  
W S Sale ◽  
U W Goodenough ◽  
J E Heuser

Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.


1992 ◽  
Vol 118 (5) ◽  
pp. 1177-1188 ◽  
Author(s):  
A G Moss ◽  
J L Gatti ◽  
G B Witman

We used in vitro translocation and cosedimentation assays to study the microtubule binding properties of sea urchin sperm outer arm dynein and its beta/IC1 subunit. Microtubules glided on glass-absorbed sea urchin dynein for a period of time directly proportional to the initial MgATP2- concentration and then detached when 70-95% of the MgATP2- was hydrolyzed. Detachment resulted from MgATP2- depletion, because (a) perfusion with fresh buffer containing MgATP2- reconstituted binding and gliding, (b) microtubules glided many minutes with an ATP-regenerating system at ATP concentrations which alone supported gliding for only 1-2 min, and (c) microtubules detached upon total hydrolysis of ATP by an ATP-removal system. The products of ATP hydrolysis antagonized binding and gliding; as little as a threefold excess of ADP/Pi over ATP resulted in complete loss of microtubule binding and translocation by the beta/IC1 subunit. In contrast to the situation with sea urchin dynein, microtubules ceased gliding but remained bound to glass-absorbed Tetrahymena outer arm dynein when MgATP2- was exhausted. Cosedimentation assays showed that Tetrahymena outer arm dynein sedimented with microtubules in an ATP-sensitive manner, as previously reported (Porter, M.E., and K. A. Johnson. J. Biol. Chem. 258: 6575-6581). However, the beta/IC1 subunit of sea urchin dynein did not cosediment with microtubules in the absence of ATP. Thus, this subunit, while capable of generating motility, lacks both structural and rigor-type microtubule binding.


Author(s):  
W. S. Sale ◽  
W.-J. Y. Tang ◽  
I. R. Gibbons

A wide variety of experimental evidence now indicates that the bending waves of cilia and flagella are the result of coordinated, localized slid¬ing movements between doublet microtubules of the axoneme (Satir, 1968; Summers and Gibbons, 1971; Shingyoji, et al. 1977; Sale and Satir, 1977). These sliding movements are thought to occur as the consequence of a mecha¬nism in which the dynein arms on each doublet microtubule make and break cross-bridge attachments to the B-subfiber of the adjacent doublet micro¬tubule in a cyclic process involving the binding and hydrolysis of ATP (Summers and Gibbons, 1973; Gibbons and Gibbons, 1973; 1974). The structu¬ral and chemical steps of this cross-bridge cycle are only beginning to be understood (Warner, 1978; Penningroth and Witman, 1979; Sale and Gibbons, 1979; Okuno, 1979). Further understanding of the nature of the events of energy transduction will require knowledge of the composition and structure of the dynein arms.


Author(s):  
Y. Yano ◽  
T. Miki-Noumura

The flagellar axonemes have a cylindrical form, which consists of nine doublet microtubules surrounding a central pair of single microtubules. Each doublet tubule has two parallel rows of projections, called outer and inner arms. Sliding movement between doublet microtubules was first reported by Summers and Gibbons, who observed that doublet tubules were extruded from trypsin-treated axonemes of sea-urchin sperm flagella on addition of ATP. Their observation indicated that the bending movement of flagella results basically from these active sliding movements between the adjacent doublet tubules in the axonemes. Experimental evidence suggests that the dynein arms projecting from the doublet tubules interact with the adjacent tubules and by hydrolysing ATP, produce the mechanical force to slide. According to Gibbons and Gibbons the outer arms were removed from the doublet tubules by extracting the demembranated sea-urchin sperm with 0.5 M KCl or NaCl, while the inner arms and other axonemal structures remained apparently intact. Although the form of their bending waves was not significantly altered, the KCl-extracted sperm had only about half the flagellar beat frequency of the demembranated sperm. The 21S latent ATPase activity form of dynein 1 restored up to 90% of the outer arms on the doublet tubules and increased the beat frequency of KCl-extracted sperm from 14 Hz to 25 Hz. We found that the NaCl-extracted axonemes of sea-urchin sperm had the ability to extrude outer doublet tubules on addition of ATP and trypsin, in a similar manner to that of the intact axonemes. We attempted to compare the sliding velocity of the outer doublet tubules in the arm-depleted axonemes and in the arm-recombined axonemes, with that in the intact axonemes, in order to find the relationship between the sliding velocity and the number of arms in these axonemes.


Sign in / Sign up

Export Citation Format

Share Document