Calcium-dependent bidirectional power stroke of the dynein arms in sea urchin sperm axonemes

1996 ◽  
Vol 109 (12) ◽  
pp. 2833-2842 ◽  
Author(s):  
S. Ishijima ◽  
M. Kubo-Irie ◽  
H. Mohri ◽  
Y. Hamaguchi

Active sliding between doublet microtubules of sea urchin sperm axonemes that were demembranated with Triton X-100 in the presence or absence of calcium was induced with ATP and elastase at various concentrations of Ca2+ to examine the effects of Ca2+ on the direction of the power stroke of the dynein arms. Dark-field light microscopy of microtubule sliding revealed that the sliding from the axonemes demembranated with Triton and millimolar calcium and disintegrated with ATP and elastase showed various patterns of sliding disintegration, including loops of doublet microtubules formed near the head or the basal body. These loops were often thicker than the remaining axonemal bundle. In contrast, only thinner loops were found from the axonemes demembranated with Triton in the absence of calcium and disintegrated with ATP and elastase at high Ca2+ concentrations. Electron microscopic examination of the direction of microtubule sliding showed that the doublet microtubules in the axonemes demembranated in the presence of millimolar calcium moved toward the base of the axonemes by the dynein arms on the adjacent doublet microtubule as well as by their own dynein arms. Doublet microtubules in the axonemes demembranated in the absence of calcium moved toward the base of the axonemes only by their own dynein arms. Similar observations have been obtained from the axonemes from which the outer dynein arms were selectively extracted. From these observations, we can conclude that the dynein arms generate force in both directions and this feature of the dynein arms arises from at least the inner dynein arms.

1973 ◽  
Vol 13 (2) ◽  
pp. 337-357 ◽  
Author(s):  
BARBARA H. GIBBONS ◽  
I. R. GIBBONS

Sea-urchin sperm were extracted with o.5 M KCl for 45 s at room temperature in the presence of Triton X-100, and then transferred to reactivating solution containing 1 mM ATP. The flagellar beat frequency of these KCl-extracted sperm (16 beats/s) was only about half that of control Triton-extracted sperm that had not been exposed to 0.5 M KCl (31 beats/s), although the form of their bending waves was not significantly altered. Examination by electron microscopy showed that the extraction with 0.5 M KCl removed the majority of the outer arms from the doublet tubules, leaving the inner arms apparently intact. By varying the duration of the KCl-extraction, it was shown that the rate of decrease in beat frequency paralleled the rate of disappearance of the arms. Prolonging the extraction time beyond 45 s at room temperature, or 4 min at o °C, had little further effect on beat frequency. ATPase measurements suggested that 6o-65% of the dynein in the original axonemes had been solubilized when the extraction with KCl was permitted to go to completion. These results indicate that the generation and propagation of flagellar bending waves of essentially typical form are not prevented by the removal of the outer row of dynein arms from the doublet tubules. In terms of the sliding filament model of flagellar bending, the results suggest that the rate of sliding between tubules under these conditions is proportional to the number of dynein arms present. The lack of significant change in wave form implies that the total amount of sliding that occurs during each bending cycle is not affected by the reduced number of dynein arms, but is regulated independently in some manner by the elastic forces generated by other structures in the bent axoneme.


1977 ◽  
Vol 73 (1) ◽  
pp. 182-192 ◽  
Author(s):  
K Ogawa ◽  
D J Asai ◽  
C J Brokaw

Effects of an antiserum against native dynein 1 from sperm flagella of the sea urchin Strongylocentrotus purpuratus were compared with effects of an antiserum previously obtained against an ATPase-active tryptic fragment (fragment 1A) of dynein 1 from sperm flagella of the sea urchin, Anthocidaris crassispina. Both antisera precipitate dynein 1 and do not precipitate dynein 2. Only the fragment 1A antiserum precipitates fragment 1A and produces a measurable inhibition of dynein 1 ATPase activity. Both antisera inhibit the movement and the movement-coupled ATP dephosphorylation of reactivated spermatozoa. The inhibition of movement by the antiserum against dynein 1 is much less than by the antiserum against fragment 1A, suggesting that a specific interference with the active ATPase site may be required for effective inhibition of movement. Both antisera reduce the bend angle as well as the beat frequency of reactivated S. purpuratus spermatozoa, suggesting that the bend angle may depend on the activity of the dynein arms which generate active sliding.


1998 ◽  
Vol 111 (1) ◽  
pp. 93-98 ◽  
Author(s):  
A. Yamada ◽  
T. Yamaga ◽  
H. Sakakibara ◽  
H. Nakayama ◽  
K. Oiwa

Tetramethylrhodamine-labelled microtubules were observed to move on rows of dynein arms of sea urchin sperm axonemes exposed by elastase-induced sliding disintegration. The microtubules moved towards the flagellar tip at a velocity of 3.1+/−2.1 microm second-1 (mean +/− s.d., n=53) in the presence of 0.1 mM ATP at 22 degrees C, but none moved towards the sperm head. We also examined the polarity of microtubule binding to axonemal doublet microtubules in the absence of ATP by using microtubules brightly labelled at their minus-ends. In 140 of 210 microtubules studied, they bound to axonemal microtubules with a parallel polarity. These results suggest that tightly packed dynein arms on the outer doublet microtubules of sperm axoneme preferentially bind microtubules to themselves with the same polarity as that of the axoneme and that they generate a force to move only these microtubules in the direction away from the sperm head.


1974 ◽  
Vol 63 (3) ◽  
pp. 970-985 ◽  
Author(s):  
Barbara H. Gibbons ◽  
I. R. Gibbons

Sea urchin sperm were demembranated and reactivated with a solution containing 0.04% Triton X-100 and 0.03 mM ATP. The ATP concentration was then lowered abruptly by diluting the sperm suspension 50-fold into reactivating solution containing no ATP. The flagella of the sperm in the diluted suspension were not motile, but they were bent into a variety of stationary rigor wave forms closely resembling the wave forms occurring at different stages of the flagellar bending cycle during normal movement. The form of these rigor waves was unchanged upon storage for several hours in the presence of dithiothreitol and EDTA. Addition of 1 µM ATP induced slow relaxation of the waves, with most of the sperm becoming partially straightened over a period of about 30 min; somewhat higher concentrations gave a more rapid and complete relaxation. Concentrations of ATP above 10 µM induced resumption of normal beating movements. Addition of ITP, GTP, or GDP (up to 1 mM) produced no relaxation of the rigor waves. Digestion with trypsin to an extent sufficient to disrupt the radial spokes and the nexin links caused no change in the rigor wave forms, suggesting that these wave forms could be maintained by the dynein cross-bridges between the outer doublet tubules of the flagellar axoneme. Study of the effects of viscous shear on the rigor wave axonemes has shown that they are resistant to distortion by bending, although they can be twisted relatively easily.


1998 ◽  
Vol 12 (3) ◽  
pp. 199-202 ◽  
Author(s):  
Stephen B. Kupferberg ◽  
John P. Bent ◽  
Edward S. Porubsky

Diagnosing Primary Ciliary Dyskinesia can often be difficult. Physical findings suggest the disease, but definitive diagnosis should be made with a ciliary biopsy. Twenty biopsies were obtained from 16 patients and all underwent both light and electron microscopic examination. In 8/20 (40%) there was a discrepancy between the different imaging techniques. Therefore, light microscopy should be used to assess adequacy of biopsy and motion of the cilia along with electron microscopy to examine ultrastructure.


Author(s):  
B.L. Giammara ◽  
H.W. Carter ◽  
E.S. Rappaport ◽  
P.E. Yates ◽  
T.A. Jarvis ◽  
...  

Apparent necrosis of leukemic leukocytes is very common, and an accompanying nuclear degeneration can be seen when blood or bone marrow preparations are examined by light microscopy. Nuclear degeneration is commonly indicated by pyknosis (condensation of chromatin), karyorrhexis, karyolysis, or chromatolysis. Granulocytes with negative nuclei (ghost cells, Fig. 1) and cytoplasmic vacuolization are also frequently observed in specimens of patients where nuclear degeneration is prominent. These events are especially apparent (Figs. 1 to 3) in blood or bone marrow preparations stained for light microscopy with a new procedure for the demonstration of granulocyte peroxidases. With this procedure, nuclear degeneration and cytoplasmic vacuolization were observed in granulocytes in thirty-three of forty-two leukemia patients while only four of thirty-four atopic disease patients displayed these phenomena. These changes appeared to be most prominent in some acute promyelocytic leukemia patients. Electron microscopic examination of cells of patients showing these phenomena was undertaken to investigate the mechanism of the degenerative processes.


1982 ◽  
Vol 92 (3) ◽  
pp. 706-713 ◽  
Author(s):  
K Ogawa ◽  
S Negishi ◽  
M Obika

The 0.5 M KCl-treatment solubilizes the outer arms from sea urchin sperm axonemes. Approximately 30 percent of A-polypeptide, corresponding to dynein 1 in SDS- polyacrylamide gel, was solubilized by this treatment (as SEA-dynein 1). Electron microscopic observation indicated that the extracted axonemes lacked the outer arms in various degrees. The DEA-dynein 1 was that the extracted axonemes lacked the outer arms in various degrees. The SEA-dyenin 1 was purified and an antiserum against it was prepared in rabbits. The specificity of antiserum to dynein 1 was determined by immunoelectrophoresis and ouchterlony's double-diffusion test. The anti-dynein 1 serum inhibited ATPase activity of purified SEA-dynein 1 by 95 percent. By the indirect peroxidase-conjugated antibody method, the loci of SEA-dynein 1 within the intact, salt- extracted and mechanically disrupted axonemes were determined to be the outer arms: deposition of electron-dense materials which represents their localization was detected at the distal ends of the outer arms, in the case of intact axonemes. The 5-6 cross- bridge was hardly decorated. No decoration was seen in the salt-extracted axonemes lacking all the outer arms. In disrupted axonemes, which consist of single to several peripheral doublets, electron-dense materials were deposited only on the outer arms. Approximately 73 percent of axonemal ATPase activity sensitive to antiserum was solubilized by repeated salt-extractions. One-half of A-polypeptide (SEA-dynein 1 located at the outer arms) was contained in the pooled extracts. The extracted axonemes contained another half of A-polypeptide (SUA-dynein 1 supposed to locate at the inner arms) and retained 31 percent of axonemal ATPase activity that was almost resistant to antiserum. Solubilized SUA-dynein 1 was immunologically the same as SEA-dynein 1. This result indicates that in situ SUA-dynein 1 did not receive anti-dynein 1 antibodies, coinciding with the result obtained for salt-extracted axonemes lacking all the outer arms by the enzyme-antibody method mentioned above. These observations suggest that immunological dissimilarity in dynein 1 between outer and inner arms but do not tell us that the inner arms do not contain dynein 1.


1992 ◽  
Vol 118 (5) ◽  
pp. 1189-1200 ◽  
Author(s):  
A G Moss ◽  
W S Sale ◽  
L A Fox ◽  
G B Witman

Glass-adsorbed intact sea urchin outer arm dynein and its beta/IC1 subunit supports movement of microtubules, yet does not form a rigor complex upon depletion of ATP (16). We show here that rigor is a feature of the isolated intact outer arm, and that this property subfractionates with its alpha heavy chain. Intact dynein mediates the formation of ATP-sensitive microtubule bundles, as does the purified alpha heavy chain, indicating that both particles are capable of binding to microtubules in an ATP-sensitive manner. In contrast, the beta/IC1 subunit does not bundle microtubules. Bundles formed with intact dynein are composed of ribbon-like sheets of parallel microtubules that are separated by 54 nm (center-to-center) and display the same longitudinal repeat (24 nm) and cross-sectional geometry of dynein arms as do outer doublets in situ. Bundles formed by the alpha heavy chain are composed of microtubules with a center-to-center spacing of 43 nm and display infrequent, fine crossbridges. In contrast to the bridges formed by the intact arm, the links formed by the alpha subunit are irregularly spaced, suggesting that binding of the alpha heavy chain to the microtubules is not cooperative. Cosedimentation studies showed that: (a) some of the intact dynein binds in an ATP-dependent manner and some binds in an ATP-independent manner; (b) the beta/IC1 subunit does not cosediment with microtubules under any conditions; and (c) the alpha heavy chain cosediments with microtubules in the absence or presence of MgATP2-. These results suggest that the structural binding observed in the intact arm also is a property of its alpha heavy chain. We conclude that whereas force-generation is a function of the beta/IC1 subunit, both structural and ATP-sensitive (rigor) binding of the arm to the microtubule are mediated by the alpha subunit.


1985 ◽  
Vol 101 (4) ◽  
pp. 1400-1412 ◽  
Author(s):  
W S Sale ◽  
U W Goodenough ◽  
J E Heuser

Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.


Sign in / Sign up

Export Citation Format

Share Document