Alpha(S1)-casein is required for the efficient transport of beta- and kappa-casein from the endoplasmic reticulum to the Golgi apparatus of mammary epithelial cells

1999 ◽  
Vol 112 (19) ◽  
pp. 3399-3412 ◽  
Author(s):  
E. Chanat ◽  
P. Martin ◽  
M. Ollivier-Bousquet

In lactating mammary epithelial cells, interaction between caseins is believed to occur after their transport out of the endoplasmic reticulum. We show here that, in alpha(S1)-casein-deficient goats, the rate of transport of the other caseins to the Golgi apparatus is highly reduced whereas secretion of whey proteins is not significantly affected. This leads to accumulation of immature caseins in distended rough endoplasmic reticulum cisternae. Casein micelles, nevertheless, were still observed in secretory vesicles. In contrast, no accumulation was found in mammary epithelial cells which lack beta-casein. In mammary epithelial cells secreting an intermediate amount of alpha(S1)-casein, less casein accumulated in the rough endoplasmic reticulum, and the transport of alpha(S1)-casein to the Golgi occurred with kinetics similar to that of control cells. In prolactin-treated mouse mammary epithelial HC11 cells, which do not express alpha(S)-caseins, endoplasmic reticulum accumulation of beta-casein was also observed. The amount of several endoplasmic reticulum-resident proteins increased in conjunction with casein accumulation. Finally, the permeabilization of rough endoplasmic reticulum vesicles allowed the recovery of the accumulated caseins in soluble form. We conclude that optimal export of the caseins out of the endoplasmic reticulum is dependent upon alpha(S1)-casein. Our data suggest that alpha(S1)-casein interacts with the other caseins in the rough endoplasmic reticulum and that the formation of this complex is required for their efficient export to the Golgi.

1971 ◽  
Vol 49 (3) ◽  
pp. 459-469 ◽  
Author(s):  
T. J. FIDDLER ◽  
MARGARET BIRKINSHAW ◽  
I. R. FALCONER

SUMMARY A study of the ultrastructure of the secretory epithelial cells of the mammary gland was carried out in virgin oestrous rabbits, pseudopregnant rabbits and pseudopregnant rabbits injected with prolactin to induce lactogenesis. Ultrastructural modifications of the mammary epithelial cells, from inactivity to active secretion after an intraductal injection of prolactin, are described. The changes produced after prolactin injection were characterized by a progressive increase in endoplasmic reticulum and in ribosomes in the cytoplasm. This was evident after 12–24 h. By the 2nd or 3rd day after hormone administration the cells had differentiated into active secretory epithelium. These cells were characterized by large numbers of ribosomes in the cytoplasm; an extensive development of rough endoplasmic reticulum; development of cisternae from the enlarging rough endoplasmic reticulum; hypertrophy of the Golgi apparatus and smooth endoplasmic reticulum; and the presence of protein granules in the vacuoles which were particularly abundant in the cytoplasm near the duct lumen. The presence of lipid droplets in the cells was less indicative of an active secretory state since they were also observed in mammary tissue from pseudopregnant rabbits. Biochemical investigation of the response of pseudopregnant mammary tissue to intraductal prolactin showed no significant rapid effects on either casein-like protein or lactose biosynthesis, but increases in both substances were observed on the 3rd day after hormone administration.


1995 ◽  
Vol 108 (2) ◽  
pp. 519-527 ◽  
Author(s):  
P.L. Jones ◽  
N. Boudreau ◽  
C.A. Myers ◽  
H.P. Erickson ◽  
M.J. Bissell

The physiological role of tenascin in vivo has remained obscure. Although tenascin is regulated in a stage and tissue-dependent manner, knock-out mice appear normal. When tenascin expression was examined in the normal adult mouse mammary gland, little or none was present during lactation, when epithelial cells actively synthesize and secrete milk proteins in an extracellular matrix/lactogenic hormone-dependent manner. In contrast, tenascin was prominently expressed during involution, a stage characterized by the degradation of the extracellular matrix and the subsequent loss of milk production. Studies with mammary cell lines indicated that tenascin expression was high on plastic, but was suppressed in the presence of the laminin-rich, Engelbreth-Holm-Swarm (EHS) tumour biomatrix. When exogenous tenascin was added together with EHS to mammary epithelial cells, beta-casein protein synthesis and steady-state mRNA levels were inhibited in a concentration-dependent manner. Moreover, this inhibition by tenascin could be segregated from its effects on cell morphology. Using two beta-casein promoter constructs attached to the chloramphenicol acetyltransferase reporter gene we showed that tenascin selectively suppressed extracellular matrix/prolactin-dependent transcription of the beta-casein gene in three-dimensional cultures. Finally, we mapped the active regions within the fibronectin type III repeat region of the tenascin molecule that are capable of inhibiting beta-casein protein synthesis. Our data are consistent with a model where both the loss of a laminin-rich basement membrane by extracellular matrix-degrading enzymes and the induction of tenascin contribute to the loss of tissue-specific gene expression and thus the involuting process.


1994 ◽  
Vol 14 (9) ◽  
pp. 6004-6012 ◽  
Author(s):  
S Altiok ◽  
B Groner

beta-Casein gene expression in mammary epithelial cells is under the control of the lactogenic hormones, glucocorticoids, insulin, and prolactin. The hormonal control affects gene transcription, and several regulatory elements in the beta-casein gene promoter between positions -80 and -221 have previously been identified. A region located in the promoter between positions -170 and -221 contains overlapping sequences for negative and positive regulatory elements. A sequence-specific single-stranded DNA-binding factor (STR), composed of two proteins with molecular masses of 35 and 54 kDa, recognizes the upper strand of this region and has a repressing role in transcription. High-level STR binding activity was observed in nuclear extracts from mammary glands of pregnant and postlactating mice and from noninduced HC11 mammary epithelial cells, cells with a low level of transcriptional activity of the beta-casein gene. STR activity is downregulated in mammary epithelial cells during lactation of the animals and after lactogenic hormone induction of HC11 cells in culture. These cells strongly transcribe the beta-casein gene. We investigated the mechanism of downregulation and found that a lactogenic-hormone-induced molecule (I-STR) inhibits STR from binding to its DNA target. I-STR is composed of RNA. STR is sequestered into the cytoplasm by I-STR after lactogenic hormone induction of mammary epithelial cells and remains present in an RNA-bound form. A high-affinity STR binding site was found in the 5' untranslated region of beta-casein mRNA. We propose that beta-casein mRNA can function as I-STR. beta-Casein mRNA may positively regulate its own transcription by translocating STR from the nucleus to the cytoplasm. The beta-casein STR binding sequence increases expression of a transfected beta-galactosidase gene when it is placed into the 5' untranslated region sequence of the mRNA. STR may have a positive role in posttranscriptional regulation.


1992 ◽  
Vol 40 (3) ◽  
pp. 257 ◽  
Author(s):  
RC Jones ◽  
M Lin

The genital ducts of Heterodontus portusjacksoni are lined by a ciliated epithelium. In the ductuli efferentes the epithelium is low and contains numerous intraepithelial leucocytes which often contain large dense bodies. All epithelial cells are ciliated and are characterised by apical vesicles, vacuoles and glycogen granules, some rough endoplasmic reticulum, dense bodies and lipid droplets, and a Golgi apparatus. The initial segment of the ductus epididymidis is lined by a very tall epithelium of ciliated and non-ciliated cells. The non-ciliated cells contain numerous apical vesicles, a large Golgi apparatus and numerous mitochondria and secretory granules in close association with an extensive endoplasmic reticulum. The terminal segment of the ductus epididymidis is lined by a low columnar epithelium. A proximal region, occupying part of the head of the epididymis, is similar to the epithelium in the ductuli efferentes. Distally, all the epithelial cells are ciliated. They are characterised by considerable dilated endoplasmic reticulum, a Golgi apparatus, apical vesicles, and numerous mitochondria and secretory granules. The secretory tubules of Leydig's glands are lined by a very tall epithelium with non-ciliated cells containing extensive, dilated, rough endoplasmic reticulum, a large Golgi apparatus, and numerous mitochondria and secretory granules. The significance of the structural differentiation of the duct is discussed in relation to the evolution of the mammalian epididymis.


Sign in / Sign up

Export Citation Format

Share Document