Ultrastructure of the Genital Duct Epithelium of the Male Port Jackson Shark, Heterodontus-Portusjacksoni

1992 ◽  
Vol 40 (3) ◽  
pp. 257 ◽  
Author(s):  
RC Jones ◽  
M Lin

The genital ducts of Heterodontus portusjacksoni are lined by a ciliated epithelium. In the ductuli efferentes the epithelium is low and contains numerous intraepithelial leucocytes which often contain large dense bodies. All epithelial cells are ciliated and are characterised by apical vesicles, vacuoles and glycogen granules, some rough endoplasmic reticulum, dense bodies and lipid droplets, and a Golgi apparatus. The initial segment of the ductus epididymidis is lined by a very tall epithelium of ciliated and non-ciliated cells. The non-ciliated cells contain numerous apical vesicles, a large Golgi apparatus and numerous mitochondria and secretory granules in close association with an extensive endoplasmic reticulum. The terminal segment of the ductus epididymidis is lined by a low columnar epithelium. A proximal region, occupying part of the head of the epididymis, is similar to the epithelium in the ductuli efferentes. Distally, all the epithelial cells are ciliated. They are characterised by considerable dilated endoplasmic reticulum, a Golgi apparatus, apical vesicles, and numerous mitochondria and secretory granules. The secretory tubules of Leydig's glands are lined by a very tall epithelium with non-ciliated cells containing extensive, dilated, rough endoplasmic reticulum, a large Golgi apparatus, and numerous mitochondria and secretory granules. The significance of the structural differentiation of the duct is discussed in relation to the evolution of the mammalian epididymis.

1971 ◽  
Vol 51 (3) ◽  
pp. 596-610 ◽  
Author(s):  
K. Nakagami ◽  
H. Warshawsky ◽  
C. P. Leblond

The parathyroid glands of young rats were radioautographed after a single injection of the protein precursor tyrosine-3H in the hope of identifying the sites of synthesis and migration of newly formed protein in the gland cells. The same procedure was used after injection of the glycoprotein precursor galactose-3H. As early as 2 min after intravenous injection of tyrosine-3H, the label was mainly found in the rough endoplasmic reticulum suggesting that cisternal ribosomes are sites of protein synthesis. By 5 and 10 min, much of the label had migrated from the rough endoplasmic reticulum into the Golgi apparatus. By 20 and 30 min, some label had migrated from there into secretory granules. By 45 min and 1 hr, the label content of the cell had decreased, indicating release of labeled material outside the cell. At 2 min after intravenous injection of galactose-3H, the label was mainly present in the Golgi apparatus, where presumably galactose is taken up into glycoprotein. By 10 min, some label appeared in secretion granules and by 30 min release of the material to the outside of the cell was under way. In conclusion, it is likely that the tyrosine-labeled protein material consists mainly of the parathyroid hormone. The galactose-labeled carbohydrate material would be either associated with the hormone in the cell or be part of a distinct glycoprotein which may be the one present on the outer surface of the plasma membrane (cell coat).


1969 ◽  
Vol 43 (2) ◽  
pp. 289-311 ◽  
Author(s):  
P. Whur ◽  
Annette Herscovics ◽  
C. P. Leblond

Rat thyroid lobes incubated with mannose-3H, galactose-3H, or leucine-3H, were studied by radioautography. With leucine-3H and mannose-3H, the grain reaction observed in the light microscope is distributed diffusely over the cells at 5 min, with no reaction over the colloid. Later, the grains are concentrated towards the apex, and colloid reactions begin to appear by 2 hr. With galactose-3H, the reaction at 5 min is again restricted to the cells but it consists of clumped grains next to the nucleus. Soon after, grains are concentrated at the cell apex and colloid reactions appear in some follicles as early as 30 min. Puromycin almost totally inhibits incorporation of leucine-3H and mannose-3H, but has no detectable effect on galactose-3H incorporation during the 1st hr. Quantitation of electron microscope radioautographs shows that mannose-3H label localizes initially in the rough endoplasmic reticulum, and by 1–2 hr much of this reaction is transferred to the Golgi apparatus. At 3 hr and subsequently, significant reactions are present over apical vesicles and colloid, while the Golgi reaction declines. Label associated with galactose-3H localizes initially in the Golgi apparatus and rapidly transfers to the apical vesicles, and then to the colloid. These findings indicate that mannose incorporation into thyroglobulin precursors occurs within the rough endoplasmic reticulum; these precursors then migrate to the Golgi apparatus, where galactose incorporation takes place. The glycoprotein thus formed migrates via the apical vesicles to the colloid.


1972 ◽  
Vol 20 (3) ◽  
pp. 220-224 ◽  
Author(s):  
A. HADDAD

Radioactive galactose was injected intravenously into rats and localized in thyroid follicular cells by electron microscopic radioautography at intervals ranging from 2.5 to 30 min after injection. The galactose label was mostly present in the Golgi apparatus at 2.5 min, with some of it in the adjacent rough endoplasmic reticulum. By 30 min, the label was found in apical vesicles and colloid. It was concluded that galactose is added to the carbohydrate side chains of incomplete thyroglobulin molecules during their travel through the cisternae of the endoplasmic reticulum into the Golgi apparatus; the uptake begins as this organelle is approached, but predominates within it. The thyroglobulin molecule which has thus been labeled is transported by the apical vesicles to the colloid.


1992 ◽  
Vol 40 (7) ◽  
pp. 919-930 ◽  
Author(s):  
A Ellinger ◽  
M Pavelka

Using lectin binding, we characterized subdomains of the rough endoplasmic reticulum (rER) in goblet cells of the rat colon. In this cell type, special rER regions can be differentiated on the basis of their content of low electron density and dilated cisternal spaces in conventional transmission electron microscopic preparations. The fine fibrillar content of these cisternal regions demonstrated high-affinity binding with lectins from wheat germ, Helix pomatia, Griffonia simplicifolia I-A4 and -B4, and Ricinus communis I, although not with the sialic acid-specific Limax flavus lectin and the fucose-binding Ulex europaeus I lectin. Sugar-inhibitory experiments indicated that glycoconjugates packed within these regions bound the lectins with higher affinity than molecules present in the Golgi apparatus and secretory granules. Furthermore, the lectin binding patterns of the rER subdomains differed from those of the Golgi apparatus and mucin granules: the terminal sugar residues sialic acid and fucose were demonstrable in the Golgi apparatus and mucin granules and were absent from the rER, while galactose-recognizing lectins bound intensely at these rER regions, weakly to Golgi elements, and were almost absent from mucin granules.


1999 ◽  
Vol 112 (19) ◽  
pp. 3399-3412 ◽  
Author(s):  
E. Chanat ◽  
P. Martin ◽  
M. Ollivier-Bousquet

In lactating mammary epithelial cells, interaction between caseins is believed to occur after their transport out of the endoplasmic reticulum. We show here that, in alpha(S1)-casein-deficient goats, the rate of transport of the other caseins to the Golgi apparatus is highly reduced whereas secretion of whey proteins is not significantly affected. This leads to accumulation of immature caseins in distended rough endoplasmic reticulum cisternae. Casein micelles, nevertheless, were still observed in secretory vesicles. In contrast, no accumulation was found in mammary epithelial cells which lack beta-casein. In mammary epithelial cells secreting an intermediate amount of alpha(S1)-casein, less casein accumulated in the rough endoplasmic reticulum, and the transport of alpha(S1)-casein to the Golgi occurred with kinetics similar to that of control cells. In prolactin-treated mouse mammary epithelial HC11 cells, which do not express alpha(S)-caseins, endoplasmic reticulum accumulation of beta-casein was also observed. The amount of several endoplasmic reticulum-resident proteins increased in conjunction with casein accumulation. Finally, the permeabilization of rough endoplasmic reticulum vesicles allowed the recovery of the accumulated caseins in soluble form. We conclude that optimal export of the caseins out of the endoplasmic reticulum is dependent upon alpha(S1)-casein. Our data suggest that alpha(S1)-casein interacts with the other caseins in the rough endoplasmic reticulum and that the formation of this complex is required for their efficient export to the Golgi.


1991 ◽  
Vol 39 (8) ◽  
pp. 1077-1087 ◽  
Author(s):  
H Tamaki ◽  
S Yamashina

We studied the ultrastructure and cytochemistry of mitotic parotid acinar cells in vivo after induction of mitosis by isoproterenol injection. With entrance of the cells into the division cycle, the Golgi apparatus lost its characteristic stacked structure and internal polarity among the cisternae, appearing as fragments distributed throughout the cytoplasm. These fragments consisted of electron-lucent vesiculotubular structures and electron-dense 70-nm vesicles; neither component showed thiamine pyrophosphatase activity, a marker for trans cisternae of the Golgi apparatus, but the 70-nm vesicles showed a positive reaction for osmium impregnation, indicating retention of the cis nature. The rough endoplasmic reticulum was dilated and fragmented. Recovery of the structure of Golgi apparatus and rearrangement of rough endoplasmic reticulum occurred in daughter cells during telophase. These changes were the same as those observed after drug-induced inhibition of protein transport. The secretory granules were not dispersed but were divided into two groups with which centrioles were closely associated. Both groups migrated with the centrioles as far as the next interphase. The distribution of 5'-nucleotidase on the luminal plasma membrane showed no change during the process of division, thus demonstrating that surface polarity was maintained during mitosis. These changes in organelle structure and distribution may be due to the conversion of cell function from a secretory to a mitotic action.


1974 ◽  
Vol 11 (5) ◽  
pp. 417-429 ◽  
Author(s):  
B. U. Pauli ◽  
G. L. Rossi ◽  
R. Straub

A trabecular adenoma of the pars intermedia of the hypophysis was seen in a 13-year-old half-bred mare that presented symptoms corresponding to Cushing's disease of man. The spindle-shaped tumor cells were for the most part ‘light’, seldom ‘dark’. Both of them were characterized by well-developed rough endoplasmic reticulum, small Golgi apparatus, and typical secretory granules with a diameter of about 200 μm. The pituitary tumor and the symptoms were accompanied by increased plasma adenocorticotrophic hormone (ACTH) and by bilateral hyperplasia of the adrenal cortex. The tumor cells of the pars intermedia were probably the source of increased ACTH, and the hyperplasia of the adrenal cortex was probably responsible for the symptoms of Cushing's disease.


1973 ◽  
Vol 21 (1) ◽  
pp. 42-50 ◽  
Author(s):  
SHOHEI YAMASHINA ◽  
TIBOR BARKA

The prenatal development of endogenous peroxidase activity in the submandibular gland of rat was investigated by means of the diaminobenzidine-H2O2 histochemical method. The submandibular gland of a 16-day-old fetus was composed of cords of uniform, undifferentiated cells which contained no secretory granules and revealed no peroxidase activity. Peroxidase activity first appeared at the 17th day of gestation in the cisternae of the rough endoplasmic reticulum and nuclear envelope in a few cells. At the 18th day of gestation cells which exhibited reaction products in the rough endoplasmic reticulum and nuclear envelope also contained secretory granules with a strong peroxidase activity. During the last days of gestation the number of peroxidase positive cells, which contained numerous secretory granules, increased. The peroxidase-containing cells are the immediate precursors of the proacinar cells of early postnatal stages. During the same time period, when the peroxidase-containing cells differentiated, a second cell type also differentiated in the cellular cords. The development of this cell type was marked by the appearance of secretory granules stainable with toluidine blue. Through the prenatal development, this cell type revealed no peroxidase activity and was identified with the terminal tubule cell of the newborn. The morphologic and cytochemical findings indicate that terminal tubule cells and proacinar cells are committed cells; the former differentiate toward 2nd order intercalated duct cells and the latter transform to mature acinar cells.


1974 ◽  
Vol 60 (1) ◽  
pp. 92-127 ◽  
Author(s):  
Melvyn Weinstock ◽  
C. P. Leblond

The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.


Sign in / Sign up

Export Citation Format

Share Document