Centromere clustering is a major determinant of yeast interphase nuclear organization

2000 ◽  
Vol 113 (11) ◽  
pp. 1903-1912 ◽  
Author(s):  
Q.W. Jin ◽  
J. Fuchs ◽  
J. Loidl

During interphase in the budding yeast, Saccharomyces cerevisiae, centromeres are clustered near one pole of the nucleus as a rosette with the spindle pole body at its hub. Opposite to the centromeric pole is the nucleolus. Chromosome arms extend outwards from the centromeric pole and are preferentially directed towards the opposite pole. Centromere clustering is reduced by the ndc10 mutation, which affects a kinetochore protein, and by the microtubule poison nocodazole. This suggests that clustering is actively maintained or enforced by the association of centromeres with microtubules throughout interphase. Unlike the Rabl-orientation known from many higher eukaryotes, centromere clustering in yeast is not only a relic of anaphase chromosome polarization, because it can be reconstituted without the passage of cells through anaphase. Within the rosette, homologous centromeres are not arranged in a particular order that would suggest somatic pairing or genome separation.

1999 ◽  
Vol 10 (7) ◽  
pp. 2393-2406 ◽  
Author(s):  
Marı́a de la Cruz Muñoz-Centeno ◽  
Susan McBratney ◽  
Antonio Monterrosa ◽  
Breck Byers ◽  
Carl Mann ◽  
...  

The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae ( Winey et al., 1991 ). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope.


1999 ◽  
Vol 112 (5) ◽  
pp. 651-658 ◽  
Author(s):  
E. Trelles-Sticken ◽  
J. Loidl ◽  
H. Scherthan

Fluorescence in situ hybridization in combination with synaptonemal complex and spindle pole body immunostaining to both spread and structurally preserved nuclei from time course experiments disclosed prominent telomere clustering during meiotic prophase of the yeast Saccharomyces cerevisiae. It was found that centromere clustering, which dominates vegetative nuclear structure, is rapidly lost after induction of meiosis. Telomeres tightly clustered during leptotene/zygotene-equivalent stages in the vicinity of the spindle pole body, giving rise to a classical chromosomal bouquet arrangement. This arrangement dissolved later during prophase. Painting of chromosomes XI revealed that initially compacted chromosome territories adopt an outstretched morphology in bouquet nuclei. This conformational state was associated with alignment and pairing. Chromosome condensation during pachytene rendered condensed and compact bivalents, and dispersed telomeres. Both the spo11 and rad50S recombination mutants formed bouquets, demonstrating that bouquet formation is recombination and synapsis independent.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


1980 ◽  
Vol 46 (1) ◽  
pp. 341-352
Author(s):  
R.A. Quinlan ◽  
C.I. Pogson ◽  
K. Gull

Methyl benzimidazol-2-yl-carbamate (MBC), at a concentration of 100 microM, has a pronounced effect on the growth of Saccharomyces cerevisiae, resulting in the accumulation of cells as large doublets. We have determined a specific execution point for the effect of MBC on the yeast cell cycle, and have shown that this execution point is between the cycle events of spindle pole body duplication and spindle pole body separation. An ultrastructural examination of the MBC-treated cells revealed the absence of cytoplasmic and spindle microtubules. MBC treatment also produced an altered spindle pole body morphology, causing the disappearance of the outer component. Nuclear size was also markedly increased in the MBC-induced doublet cells, although the septa were completely absent from these doublet cells. It is proposed that MBC inhibits microtubule polymerization, rather than causing the depolymerization of stable microtubules.


1998 ◽  
Vol 9 (4) ◽  
pp. 775-793 ◽  
Author(s):  
Gislene Pereira ◽  
Michael Knop ◽  
Elmar Schiebel

In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the γ-tubulin complex containing the γ-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.


1986 ◽  
Vol 6 (6) ◽  
pp. 2213-2222 ◽  
Author(s):  
B Futcher ◽  
J Carbon

Plasmids carrying a Saccharomyces cerevisiae centromere have a copy number of one or two, whereas other yeast plasmids have high copy numbers. The number of CEN plasmids per yeast cell was made artificially high by transforming cells simultaneously with several different CEN plasmids carrying different, independently selectable markers. Some host cells carried five different CEN plasmids and an average total of 13 extra copies of CEN3. Several effects were noted. The copy number of each plasmid was unexpectedly high. The plasmids were mutually unstable. Cultures contained many dead cells. The viable host cells grew more slowly than control cells, even in nonselective medium. There was a pause in the cell cycle at or just before mitosis. We conclude that an excess of centromeres is toxic and that the copy number of centromere plasmids is low partly because of selection against cells carrying multiple centromere plasmids. The toxicity may be caused by competition between the centromeres for some factor present in limiting quantities, e.g., centromere-binding proteins, microtubules, or space on the spindle pole body.


2001 ◽  
Vol 183 (7) ◽  
pp. 2372-2375 ◽  
Author(s):  
Andreas Wesp ◽  
Susanne Prinz ◽  
Gerald R. Fink

ABSTRACT During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.


1994 ◽  
Vol 125 (4) ◽  
pp. 853-866 ◽  
Author(s):  
M A Osborne ◽  
G Schlenstedt ◽  
T Jinks ◽  
P A Silver

The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.


2007 ◽  
Vol 18 (4) ◽  
pp. 1187-1202 ◽  
Author(s):  
Jeffrey K. Moore ◽  
Rita K. Miller

During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.


Sign in / Sign up

Export Citation Format

Share Document