scholarly journals Self-assembly and binding of a sorting nexin to sorting endosomes

2001 ◽  
Vol 114 (9) ◽  
pp. 1743-1756 ◽  
Author(s):  
R.C. Kurten ◽  
A.D. Eddington ◽  
P. Chowdhury ◽  
R.D. Smith ◽  
A.D. Davidson ◽  
...  

The fate of endocytosed membrane proteins and luminal contents is determined by a materials processing system in sorting endosomes. Endosomal retention is a mechanism that traps specific proteins within this compartment, and thereby prevents their recycling. We report that a sorting nexin SNX1, a candidate endosomal retention protein, self-assembles in vitro and in vivo, and has this property in common with its yeast homologue Vps5p. A comparison of SNX1 expressed in bacterial and in mammalian systems and analyzed by size-exclusion chromatography indicates that in cytosol SNX1 tetramers are part of a larger complex with additional proteins. An endosomal retention function would require that SNX1 bind to endosomal membranes, yet the complexes that we analyzed were largely soluble and little SNX1 was found in pellet fractions. Using green fluorescent protein fusions, endocytic compartment markers and fluorescence recovery after photobleaching, we found that there is an equilibrium between free cytoplasmic and early/sorting endosome-bound pools of green fluorescent protein-SNX1. Fluorescence resonance energy transfer indicated that spectral variants of green fluorescent protein-SNX1 were oligomeric in vivo. In cell extracts, these green fluorescent protein-SNX1 oligomers corresponded to tetrameric and larger complexes of green fluorescent protein-SNX1. Using video microscopy, we observed small vesicle docking and tubule budding from large green fluorescent protein-SNX1 coated endosomes, which are features consistent with their role as sorting endosomes. http://www.biologists.com/JCS/movies/jcs2058.html

2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

2010 ◽  
Vol 22 (1) ◽  
pp. 373
Author(s):  
M. Reichenbach ◽  
F. A. Habermann ◽  
H. D. Reichenbach ◽  
T. Guengoer ◽  
F. Weber ◽  
...  

An alternative approach to classic techniques for the generation of transgenic livestock is the use of viral vectors. Using lentiviral vectors (LV) we previously generated transgenic founder cattle with integrants carrying phosphoglycerate kinase (PGK) promoter-enhanced green fluorescent protein (eGFP) expression cassettes (Hofmann et al. 2004 Biol. Reprod. 71, 405-409). The aim of this work was to investigate the transmission of LV-PGK-eGFP integrants through the female and male germ line of transgenic founder cattle in resulting embryos, fetuses, and offspring. The female founder animal was superovulated and artificially inseminated with a nontransgenic bull. Six of the 16 embryos obtained were transferred to synchronized recipient heifers, resulting in 2 pregnancies and birth of 1 healthy male transgenic calf, expressing eGFP as detected by in vivo imaging and real-time PCR. Cryopreserved semen of the founder bull and matured COC of nontransgenic cows were used for in vitro embryo production as previously described by Hiendleder et al. (2004 Biol. Reprod. 71, 217-223). The rates of cleavage and development to blastocysts in vitro corresponded to 52.3 ± 3.8% and 23.5 ± 4.6%, respectively. In vivo expression of eGFP was observed at blastocyst stage (Day 7 after IVF) and was seen in 93.8% (198/211) of all blastocysts. Twenty-four eGFP-positive embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos flushed on Day 15, 2 fetuses recovered on Day 45, and a healthy male transgenic calf revealed consistent high-level expression of eGFP in all tissues investigated. These observations show for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. Although eGFP transgenic cattle have been produced before by nuclear transfer from transfected cells, lentiviral transgenesis has the advantage that only one copy of the provirus is integrated at a particular chromosomal integration site. High-fidelity expression of eGFP in embryos, fetuses, and offspring of founders provides an interesting tool for developmental studies in cattle, including interactions of gametes, embryos, and fetuses with their maternal environment.


1999 ◽  
Vol 67 (4) ◽  
pp. 1812-1820
Author(s):  
Maurizio del Poeta ◽  
Dena L. Toffaletti ◽  
Thomas H. Rude ◽  
Sara D. Sparks ◽  
Joseph Heitman ◽  
...  

2018 ◽  
Vol 194 ◽  
pp. 29-39 ◽  
Author(s):  
Fatemeh Motevalli ◽  
Azam Bolhassani ◽  
Shilan Hesami ◽  
Sepideh Shahbazi

2007 ◽  
Vol 196 (s2) ◽  
pp. S313-S322 ◽  
Author(s):  
Hideki Ebihara ◽  
Steven Theriault ◽  
Gabriele Neumann ◽  
Judie B. Alimonti ◽  
Joan B. Geisbert ◽  
...  

2001 ◽  
Vol 357 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Jonathan P. WAUD ◽  
Alexandra BERMÚDEZ FAJARDO ◽  
Thankiah SUDHAHARAN ◽  
Andrew R. TRIMBY ◽  
Jinny JEFFERY ◽  
...  

Homogeneous assays, without a separation step, are essential for measuring chemical events in live cells and for drug discovery screens, and are desirable for making measurements in cell extracts or clinical samples. Here we demonstrate the principle of chemiluminescence resonance energy transfer (CRET) as a homogeneous assay system, using two proteases as models, one extracellular (α-thrombin) and the other intracellular (caspase-3). Chimaeras were engineered with aequorin as the chemiluminescent energy donor and green fluorescent protein (GFP) or enhanced GFP as the energy acceptors, with a protease linker (6 or 18 amino acid residues) recognition site between the donor and acceptor. Flash chemiluminescent spectra (20–60 s) showed that the spectra of chimaeras matched GFP, being similar to that of luminous jellyfish, justifying their designation as ‘Rainbow’ proteins. Addition of the protease shifted the emission spectrum to that of aequorin in a time- and dose-dependent manner. Separation of the proteolysed fragments showed that the ratio of green to blue light matched the extent of proteolysis. The caspase-3 Rainbow protein was able to provide information on the specificity of caspases in vitro and in vivo. It was also able to monitor caspase-3 activation in cells provoked into apoptosis by staurosporine (1 or 2μM). CRET can also monitor GFP fluor formation. The signal-to-noise ratio of our Rainbow proteins is superior to that of fluorescence resonance energy transfer, providing a potential platform for measuring agents that interact with the reactive site between the donor and acceptor.


2007 ◽  
Vol 15 (3) ◽  
pp. 3-5
Author(s):  
Stephen W. Carmichael

How do lumens form? Two mechanisms that come readily to mind are a wrapping model, similar to the wrapping of the myelin sheath around a neuronal process, and a solid core of cells followed by apoptosis of the central cells. Another obvious mechanism that was suggested over 100 years ago is the fusion of intracellular vacuoles. Whereas several recent studies have supported this latter mechanism, it has not yet been proven. Now, the appropriate animal model (zebrafish), the modern techniques (transgenic chimeras), dyes (green fluorescent protein and monomeric red fluorescent protein) that can be linked to proteins to label vacuoles, and two-photon imaging in real time finally have provided the strongest support yet. In an article by Makoto Kamei, Brian Saunders, Kayla Bayless, Louis Dye, George Davis, and Brant Weinstein the assembly of endothelial tubes from intracellular vacuoles was observed in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document