Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles

1977 ◽  
Vol 25 (1) ◽  
pp. 293-312 ◽  
Author(s):  
C.D. Ockleford ◽  
A. Whyte

Coated vesicles may be an important component of the micropinocytic system of the human placenta. Regions of very dense reaction with glycocalyx stains are restricted to membranes within forming and fully formed coated vesicles. This is interpreted as evidence against permanently grouped specific binding sites having a role in the selective uptake of materials by micropinocytosis, and as support for theories of coated-vesicle formation which take into account the dynamic nature of membrane components. The pyroantimonate precipitation technique which was employed in an attempt to localize cations in placental tissue at term resulted in the deposition of electron-dense material in coated vesicles and basement membrane. Examination of the distribution of coated vesicles in placental tissue explants at 8–12 weeks of gestation revealed a restricted distribution of these organelles. Probably more than 89% of coated vesicles lie within the largest vesicles' diameter from the cell surface. Placental coated vesicles were isolated and examined using negative staining. A polygonally patterened structure was apparent on their surfaces. Analysis of the isolated fraction of coated vesicles using sodium dodecyl sulphate polyacrylamide gel electrophoresis shows the presence of a major protein of molecular weight 180000. This is the same molecular weight that has been given for clathrin, the major protein of the raised polygonally patterned structure on the cytoplasmic surface of coated vesicles from other sources.

1985 ◽  
Vol 225 (3) ◽  
pp. 713-721 ◽  
Author(s):  
D Gravotta ◽  
H J F Maccioni

The content of gangliosides and sialosylglycoproteins was investigated in a coated-vesicle-enriched fraction prepared from bovine brain by the method of Pearse [(1975) J. Mol. Biol. 97, 93-98] and further purified by g.p.c. (glass-permeation chromatography) [Pfeffer & Kelly (1981) J. Cell Biol. 91, 385-391]. From morphological criteria and from the analysis of the polypeptide pattern on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the coated-vesicle fraction (CV-fraction) appeared more than 95% pure. The ganglioside-NeuAc (N-acetylneuraminate), glycoprotein-NeuAc, phospholipid and cholesterol contents of CV-fraction were compared with those of bovine brain synaptic plasma membranes (SPM). The cholesterol to phospholipid molar ratio was 0.47 +/- 0.07 in CV-fraction and 1.06 +/- 0.08 in SPM. The ganglioside-NeuAc and glycoprotein-NeuAc to phospholipid molar ratios were 0.047 and 0.020 respectively in CV-fraction and 0.039 and 0.016 respectively in SPM. The (Na+ + K+)-dependent ATPase activity sensitive to ouabain (in mumol of Pi/h per nmol of phospholipid) was 1.04 in CV-fraction and 0.63 in SPM; the ratio between this activity and the activity resistant to ouabain was 2 in CV-fraction and 1.4 in SPM. A t.l.c. analysis of the ganglioside fractions showed that most of the ganglioside species present in SPM were present in CV-fraction. In a rat brain coated-vesicle preparation not subjected to g.p.c., the activities [as sugar-radioactivity (c.p.m.) transferred/h per mumol of phospholipid] of the enzymes CMP-NeuAc:sialosyl-lactosylceramide (GM3) sialosyl-, UDP-Gal:N-acetylgalactosaminyl(sialosyl)lactosylceramide (GM2) galactosyl- and UDP-GalNAc:sialosyl-lactosylceramide (GM3) N-acetylgalactosaminyl-transferases, which were considered Golgi-apparatus markers, were about 19, 16 and 10% respectively of those determined in rat brain neuronal perikaryon-enriched fractions. Taken together, the results indicate that most of the major gangliosides are constituents of coated vesicles.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1035-1039
Author(s):  
HR Choe ◽  
ST Moseley ◽  
J Glass ◽  
MT Nunez

Coated vesicles bearing the transferrin-transferrin receptor complex were isolated from rabbit reticulocytes by freeze-thaw cell lysis, followed by differential centrifugation with pelleting of vesicles at 100,000 g. Electronmicroscopy demonstrated the vesicles to have the characteristic morphology of coated vesicles, including the appearance of triskelions. The protein composition of the vesicles as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis included transferrin, transferrin receptor, and proteins of apparent mol wt of approximately 180,000, 140,000, 100,000, and 47,000 daltons. The 180,000 and 100,000 mol wt proteins were identified as clathrin and coated vesicle assembly factor proteins, respectively, by Western blot analyses. The vesicles had a Mg2+-dependent ATPase with a specific activity of approximately 8.5 nmoles ATP converted/min/mg vesicle protein. The vesicles could acidify the intravesicular space, as evidenced by the stimulation of the Mg2+-ATPase by the protonophore FCCP. Reticulocytes appear to be an excellent source of coated vesicles and as such should provide a model for studying the endocytosis of transferrin and the steps of iron uptake that proceed in these vesicles.


1985 ◽  
Vol 100 (5) ◽  
pp. 1499-1507 ◽  
Author(s):  
D R Critchley ◽  
P G Nelson ◽  
W H Habig ◽  
P H Fishman

We examined the nature of the tetanus toxin receptor in primary cultures of mouse spinal cord by ligand blotting techniques. Membrane components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled tetanus toxin. The toxin bound only to material at or near the dye front, which was lost when the cells were delipidated before electrophoresis. Gangliosides purified from the lipid extract were separated by thin-layer chromatography and the chromatogram was overlaid with 125I-toxin. The toxin bound to gangliosides corresponding to GD1b and GT1b. Similar results were obtained with brain membranes; thus, gangliosides rather than glycoproteins appear to be the toxin receptors both in vivo and in neuronal cell cultures. To follow the fate of tetanus toxin bound to cultured neurons, we developed an assay to measure cell-surface and internalized toxin. Cells were incubated with tetanus toxin at 0 degree C, washed, and sequentially exposed to antitoxin and 125I-labeled protein A. Using this assay, we found that much of the toxin initially bound to cell surface disappeared rapidly when the temperature was raised to 37 degrees C but not when the cells were kept at 0 degree C. Some of the toxin was internalized and could only be detected by our treating the cells with Triton X-100 before adding anti-toxin. Experiments with 125I-tetanus toxin showed that a substantial amount of the toxin bound at 0 degree C dissociated into the medium upon warming of the cells. Using immunofluorescence, we confirmed that some of the bound toxin was internalized within 15 min and accumulated in discrete structures. These structures did not appear to be lysosomes, as the cell-associated toxin had a long half-life and 90% of the radioactivity released into the medium was precipitated by trichloroacetic acid. The rapid internalization of tetanus toxin into a subcellular compartment where it escapes degradation may be important for its mechanism of action.


1982 ◽  
Vol 156 (5) ◽  
pp. 1312-1324 ◽  
Author(s):  
A G Barbour ◽  
S L Tessier ◽  
H G Stoenner

Borrelia hermsii, a relapsing fever agent, manifests antigenic variation in vivo and in vitro. We studied three mouse-passaged serotypes of strain HS1 (7, 14, and 21) and a HS1 derivative obtained after multiple in vitro passages (C serotype). All four serotypes had two major proteins in whole cell lysates fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One major protein species (pII) had the same apparent subunit molecular weight (or approximately 3.9 X 10(4) in all the serotypes. In contrast, the other abundant protein in lysates, pI, had a different apparent molecular weight in each serotype. In one gel the molecular weights of pIc, pI7, pI14, and pI21 were 1.9, 4.2, 4.1, and 4.0 X 10(4), respectively. Serotype-specific mouse antisera bound to both hemologous and heterologous pIIs, to homologous pI, but not to heterologous pI in Western blots. Hybridomas were raised from spleens of mice infected with B. hermsii. Monoclonal antibodies were identified by immunofluorescence assays using whole organisms. Monoclonal antibodies specific for serotype 7 (H1826) or for serotype 21 (H3326) bound only to pI7 or pI21, respectively, in Western blots. The surface location of the pI was suggested not only by the immunofluorescence studies but also by the labeling of pI7 and pI21 when whole cells of serotypes 7 and 21 were incubated with 125I in the presence of Iodogen. Under the same circumstances, pII was relatively poorly labeled. These studies have identified the variable pI proteins of B. hermsii as serotype-specific antigens. A change from one pI to another may be the basis of antigenic variation of Borrelia species during relapsing fever.


1981 ◽  
Vol 195 (2) ◽  
pp. 373-382 ◽  
Author(s):  
C S Jones ◽  
P Shankaran ◽  
J W Callahan

Placental sphingomyelinase has been purified to apparent homogeneity by a procedure that makes extensive use of hydrophobic interaction chromatography on sphingosylphosphocholine-CH-, octyl-, hexyl- and Blue-Sepharoses. Enzyme purification is about 10000- 14000-fold over starting extract with excellent yield (usually greater than 28%). Purification of bis-4-methylumbelliferyl phosphate phosphodiesterase activity generally paralleled that of sphingomyelinase during the final stages of the procedure. The enzyme also hydrolysed bis-p-nitrophenyl phosphate, but at a lower rate compared with bis-4-methylumbelliferyl phosphate. A single major protein was observed under non-denaturing conditions. Sphingomyelinase, denatured by reduction and alkylation, is composed of a major polypeptide chain with an apparent molecular weight of 89 100 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Two minor lower-molecular-weight components were consistently obtained at 47 500 and 30 700. These results were also obtained after maleoylation of the reduced and alkylated sample. The enzyme contains a blocked-N-terminal amino acid. An extensive search for contaminating enzymes revealed the presence of minor amounts of acid phosphatase, which were removed from the final enzyme sample. The highly purified enzyme is stable for several weeks when stored with Triton X-100 at 4 degrees C. The pure enzyme aggregates under denaturing and electrophoretic conditions and special care must be taken to ensure that hydrophobic bonding of the protein is decreased as much as possible. The reproducibility and large scale of this procedure should facilitate further study on the structure and kinetic properties of the enzyme.


1975 ◽  
Vol 21 (7) ◽  
pp. 1132-1136 ◽  
Author(s):  
S. Kabir

Lactoperoxidase-catalyzed radioiodination with Na125I was performed both on intact Salmonella typhimurium 1195 and on ghost membrane isolated from the same bacterial strain. Ghost membrane was also prepared from radioiodinated whole bacteria. The labelled proteins from both these ghost membrane preparations were compared by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate to identify the cell surface protein. From the results obtained it was concluded that one major protein with an apparent molecular weight of 12 000 – 13 000 was exposed on the exterior surface of the ghost membrane.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1035-1039 ◽  
Author(s):  
HR Choe ◽  
ST Moseley ◽  
J Glass ◽  
MT Nunez

Abstract Coated vesicles bearing the transferrin-transferrin receptor complex were isolated from rabbit reticulocytes by freeze-thaw cell lysis, followed by differential centrifugation with pelleting of vesicles at 100,000 g. Electronmicroscopy demonstrated the vesicles to have the characteristic morphology of coated vesicles, including the appearance of triskelions. The protein composition of the vesicles as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis included transferrin, transferrin receptor, and proteins of apparent mol wt of approximately 180,000, 140,000, 100,000, and 47,000 daltons. The 180,000 and 100,000 mol wt proteins were identified as clathrin and coated vesicle assembly factor proteins, respectively, by Western blot analyses. The vesicles had a Mg2+-dependent ATPase with a specific activity of approximately 8.5 nmoles ATP converted/min/mg vesicle protein. The vesicles could acidify the intravesicular space, as evidenced by the stimulation of the Mg2+-ATPase by the protonophore FCCP. Reticulocytes appear to be an excellent source of coated vesicles and as such should provide a model for studying the endocytosis of transferrin and the steps of iron uptake that proceed in these vesicles.


1992 ◽  
Vol 68 (05) ◽  
pp. 534-538 ◽  
Author(s):  
Nobuhiko Yoshida ◽  
Shingi Imaoka ◽  
Hajime Hirata ◽  
Michio Matsuda ◽  
Shinji Asakura

SummaryCongenitally abnormal fibrinogen Osaka III with the replacement of γ Arg-275 by His was found in a 38-year-old female with no bleeding or thrombotic tendency. Release of fibrinopeptide(s) by thrombin or reptilase was normal, but her thrombin or reptilase time in the absence of calcium was markedly prolonged and the polymerization of preformed fibrin monomer which was prepared by the treatment of fibrinogen with thrombin or reptilase was also markedly defective. Propositus' fibrinogen had normal crosslinking abilities of α- and γ-chains. Analysis of fibrinogen chains on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the system of Laemmli only revealed the presence of abnormal γ-chain with an apparently higher molecular weight, the presence of which was more clearly detected with SDS-PAGE of fibrin monomer obtained by thrombin treatment. Purified fragment D1 of fibrinogen Osaka III also seemed to contain an apparently higher molecular weight fragment D1 γ remnant on Laemmli gels, which was digested faster than the normal control by plasmin in the presence of [ethy-lenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA).


1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


Sign in / Sign up

Export Citation Format

Share Document