scholarly journals Variable major proteins of Borrellia hermsii.

1982 ◽  
Vol 156 (5) ◽  
pp. 1312-1324 ◽  
Author(s):  
A G Barbour ◽  
S L Tessier ◽  
H G Stoenner

Borrelia hermsii, a relapsing fever agent, manifests antigenic variation in vivo and in vitro. We studied three mouse-passaged serotypes of strain HS1 (7, 14, and 21) and a HS1 derivative obtained after multiple in vitro passages (C serotype). All four serotypes had two major proteins in whole cell lysates fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One major protein species (pII) had the same apparent subunit molecular weight (or approximately 3.9 X 10(4) in all the serotypes. In contrast, the other abundant protein in lysates, pI, had a different apparent molecular weight in each serotype. In one gel the molecular weights of pIc, pI7, pI14, and pI21 were 1.9, 4.2, 4.1, and 4.0 X 10(4), respectively. Serotype-specific mouse antisera bound to both hemologous and heterologous pIIs, to homologous pI, but not to heterologous pI in Western blots. Hybridomas were raised from spleens of mice infected with B. hermsii. Monoclonal antibodies were identified by immunofluorescence assays using whole organisms. Monoclonal antibodies specific for serotype 7 (H1826) or for serotype 21 (H3326) bound only to pI7 or pI21, respectively, in Western blots. The surface location of the pI was suggested not only by the immunofluorescence studies but also by the labeling of pI7 and pI21 when whole cells of serotypes 7 and 21 were incubated with 125I in the presence of Iodogen. Under the same circumstances, pII was relatively poorly labeled. These studies have identified the variable pI proteins of B. hermsii as serotype-specific antigens. A change from one pI to another may be the basis of antigenic variation of Borrelia species during relapsing fever.

1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


Parasitology ◽  
1987 ◽  
Vol 95 (3) ◽  
pp. 479-489 ◽  
Author(s):  
M. H. Wisher ◽  
M. E. Rose

SUMMARYEimerian sporozoites can be recovered from intestinal washings after oral administration of oocysts to chickens but suspensions of sporozoites are usually prepared in the laboratory by incubation of sporocysts or fractured oocysts in vitro, at body temperatures, with relatively high concentrations of trypsin and bile salts. Since these agents affect membrane structure, the surface membrane of proteins of Eimeria tenella sporozoites excysted in vivo and in vitro have been compared. Surface radio-iodination followed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) showed that more 125I was incorporated into polypeptides on sporozoites excysted in vivo than on sporozoites excysted in vitro. The 125I-polypeptide profile of sporozoites excysted in vivo was more resistant to subsequent incubation with pure trypsin than that of sporozoites excysted in vitro, but incubation with bile salts resulted in the loss of some iodinated polypeptides from both preparations of iodinated sporozoites. Reaction with combinations of crude trypsin and bile salts led to the lysis of sporozoites. The method of excystation had no effect on the reaction of convalescent chicken serum with Western blots of sporozoites but the results of immunofluorescent staining carried out with mouse monoclonal antibodies indicated that the structure of the cell surface was altered and some antigenic determinants were lost from sporozoites excysted in vitro. In contrast, neither the infectivity of sporozoites determined in vivo, nor their invasion of cultured cells was changed by the method of excystation.


2001 ◽  
Vol 69 (2) ◽  
pp. 1009-1015 ◽  
Author(s):  
Alan G. Barbour ◽  
Virgilio Bundoc

ABSTRACT The antigenic variation of the relapsing fever agent Borrelia hermsii is associated with changes in the expression of the Vlp and Vsp outer membrane lipoproteins. To investigate whether these serotype-defining proteins are the target of a neutralizing and protective antibody response, monoclonal antibodies were produced from spleens of infected mice just after clearance of serotype 7 cells from the blood. Two immunoglobulin M monoclonal antibodies, H7-7 and H7-12, were studied in detail. Both antibodies specifically agglutinated serotype 7 cells and inhibited their growth in vitro. Administered to mice before or after infection, both antibodies provided protection against infection or substantially reduced the number of spirochetes in the blood of mice after infection. Whereas antibody H7-12 bound to Vlp7 in Western blotting, enzyme-linked immunosorbent assay, and immunoprecipitation assays, as well as to whole cells in other immunoassays, antibody H7-7 only bound to wet, intact cells of serotype 7. Antibody H7-7 selected against cells expressing Vlp7 in vitro and in vivo, an indication that Vlp7 was a conformation-sensitive antigen for the antibody. Vaccination of mice with recombinant Vlp7 with adjuvant elicited antibodies that bound to fixed whole cells of serotype 7 and to Vlp7 in Western blots, but these antibodies did not inhibit the growth of serotype 7 in vitro and did not provide protection against an infectious challenge with serotype 7. The study established that a Vlp protein was the target of a neutralizing antibody response, and it also indicated that the conformation and/or the native topology of Vlp were important for eliciting that immunity.


1980 ◽  
Vol 189 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Yoav Ben-Yoseph ◽  
Melinda Hungerford ◽  
Henry L. Nadler

Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.


2000 ◽  
Vol 38 (1) ◽  
pp. 120-124
Author(s):  
J. H. Oliver ◽  
K. L. Clark ◽  
F. W. Chandler ◽  
L. Tao ◽  
A. M. James ◽  
...  

ABSTRACT Twenty-eight Borrelia burgdorferi isolates from the Charleston, S.C., area are described. This represents the first report and characterization of the Lyme disease spirochete from that state. The isolates were obtained from December 1994 through December 1995 from the tick Ixodes scapularis , collected from vegetation, and from the rodents Peromyscus gossypinus (cotton mouse), Neotoma floridana (eastern wood rat), and Sigmodon hispidus (cotton rat). All isolates were screened immunologically by indirect immunofluorescence with monoclonal antibodies to B. burgdorferi -specific outer surface protein A (OspA) (antibodies H5332 and H3TS) and B. burgdorferi -specific OspB (antibodies H6831 and H614), a Borrelia (genus)-specific antiflagellin antibody (H9724), Borrelia hermsii -specific antibodies (H9826 and H4825), and two polyclonal antibodies (one to Borrelia species and another to B. burgdorferi ). Six of the isolates were analyzed by exposing Western blots to monoclonal antibodies H5332, H3TS, H6831, and H9724. All isolates were also analyzed by PCR with five pairs of primers known to amplify selected DNA target sequences specifically reported to be present in the reference strain, B. burgdorferi B-31. The protein profiles of six of the isolates (two from ticks, one from a cotton mouse, two from wood rats, and one from a cotton rat) also were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We conclude that the 28 Charleston isolates are B. burgdorferi sensu stricto based on their similarities to the B. burgdorferi B-31 reference strain.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3343-3349 ◽  
Author(s):  
PC Simons ◽  
L Elias

Abstract This laboratory has been characterizing protein serine/threonine kinase reactions of hematopoietic tissues, whose most distinguishing characteristics in vitro are stimulation with vesicular phosphatidyl glycerol, and the ability to function using Mn2+ as the sole divalent cation. The major protein substrates are a 73-kD protein and a protein migrating near ovalbumin on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The 47-kD protein was partially purified from cells harvested by leukapheresis from a patient with acute myelogenous leukemia, using ammonium sulfate precipitation and ion exchange chromatography. This partially purified ion-exchange fraction contained an endogenous kinase activity with characteristics similar to those we previously described of protein kinase P (protein kinase, phospholipid- stimulable: PK-P), but not typical of any form of protein kinase C (PK- C). With longer phosphorylation, the 47-kD band showed increasingly lower mobility demonstrable both by Coomassie blue staining and autoradiography, suggesting both that it was multiply phosphorylated, and that the excisable band was pure. The protein was thus eluted from preparative gel slices and digested with endoproteinase lys C. Sequence data from the fragments identified the protein as the 47-kD calpain fragment of talin, a protein found in focal adhesion plaques and some cell-cell contacts. PK-C phosphorylated the 47-kD protein, as has been reported previously, and phosphopeptide mapping disclosed a similar pattern of phosphorylation using either PK-C or the endogenous activity. The 47-kD protein labeled with the endogenous kinase contained predominantly phosphoserine, with some phosphothreonine and a trace of phosphotyrosine. Intact, purified talin was also phosphorylated by PK-P in a phospholipid-stimulable manner, but at 1/20 the rate of the 47-kD fragment.


Author(s):  
M Karunakaran ◽  
Vivek C Gajare ◽  
Ajoy Mandal ◽  
Mohan Mondal ◽  
S K Das ◽  
...  

This experiment was conducted to study the electrophoretic characters of heparin binding proteins (HBP) of Black Bengal buck semen and their correlation with sperm characters and cryo-survivability. Semen ejaculates (n=20/buck) were collected from nine bucks and in vitro sperm characters were evaluated at collection, after equilibration and after freeze - thawing. HBP were isolated through heparin column and discontinuous Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed to assess molecular weight. Significant difference (plessthan0.01) were observed among the bucks in sperm characters and freezability. Eight protein bands of 17 to 180 kDa in seminal plasma and 7 bands in sperm were found. 180 -136 kDa HBP of seminal plasma and 134-101 kDa HBP of sperm had showed high correlation with in vitro sperm characters. Further studies on identification of these proteins and their correlation with in vivo pregnancy are needed to find their role as marker for buck selection.


2000 ◽  
Vol 78 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Christine Masterson ◽  
Clifford Wood

Carnitine palmitoyltransferase (EC 2.3.1.21), an enzyme that catalyses the reversible transfer of activated long-chain acyl groups between CoASH and L-carnitine, has been confirmed in pea leaf chloroplasts. This enzyme is bound to the chloroplast inner envelope membrane and has two isoforms, one bound to the outside (cytosol side) of the inner envelope and one bound to the inside (stromal side) of the inner envelope. Malonyl CoA inhibited the activity of the outer carnitine palmitoyltransferase, while stimulating the activity of the inner isoform and may be a regulator of these enzymes in vivo. Carnitine palmitoyltransferase was solubilized from the chloroplast envelope by detergent treatment and the two isoforms separated by Q-Sepharose anion exchange chromatography. Both proteins were immunochemically observed by probing Western blots of sodium dodecyl sulfate - polyacrylamide gel electrophoresis gels using an anti-beef heart mitochondrial carnitine palmitoyltransferase polyclonal antibody. The monomeric molecular mass of the protein recognized by this antibody was approximately 20 kDa. This 20-kDa protein also bound3H-carnitine. Both isoforms had broad acyl CoA substrate specificities, but showed increased activity with desaturated long-chain acyl CoAs, exhibiting a preference for linolenoyl CoA. A role for carnitine palmitoyltransferase in the shuttling of fatty acids across the chloroplast envelope is suggested.Key words: Pisum sativum, chloroplasts, carnitine palmitoyltransferase, fatty acid metabolism, eukaryotic pathway, membrane transport.


1982 ◽  
Vol 156 (6) ◽  
pp. 1739-1754 ◽  
Author(s):  
M E Medof ◽  
K Iida ◽  
C Mold ◽  
V Nussenzweig

The main finding of this paper is that CR1, the membrane receptor for C3b and C4b, together with C3b/C4b-inactivator (I), degrades C3b bound to immune complexes (C3b*). Two fragments are generated: C3c, which is released from the immune complexes, and C3d*. The C3c fragment released from the cell intermediate EAC1423b prepared with 125I-C3 was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and radioautography. It has a 135,000 mol wt and contains disulfide bonded labeled polypeptide chains of 75,000 and 31,000 mol wt, which presumably represent the beta and a fragment of the alpha-chain of C3b*. Silver staining of the SDS-PAGE gels revealed other C3-derived bands with 39-42,000 mol wt. Human erythrocytes + I also cleave C3b* into C3c and C3d*. The activity of the erythrocytes is CR1 mediated because it can be totally inhibited by monoclonal antibodies to CR1. In contrast with these results, I together with the serum protein beta 1H (H) transform EAC1423b into hemolytically inactive EAC1423bi and cleave the alpha' chain of C3b* into fragments of 70,000 and 40,000 mol wt. Small amounts of C3c are also released at relatively high concentrations of H. On a molar basis, the efficiency of CR1 in the generation of C3c and C3d is 10(4)-10(5) greater than H. An additional observation was that C3c could be released by treating EAC1423bi with CR1 + I and that this reaction was also inhibited by monoclonal antibodies to CR1. Therefore, it is likely that CR1 has binding affinity for iC3b and that the degradation of C3b* proceeds as follows: C3b (formula, see text) C3c + C3d*. Taken together, our findings argue that the processing of C3b* in vivo occurs in solid phase, that is, on the surface of cells bearing CR1.


Sign in / Sign up

Export Citation Format

Share Document