scholarly journals Microtubule-independent movement of the fission yeast nucleus

2021 ◽  
pp. jcs.253021
Author(s):  
Sanju Ashraf ◽  
Ye Dee Tay ◽  
David A. Kelly ◽  
Kenneth E. Sawin

Movement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum-plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells.

2020 ◽  
Author(s):  
Sanju Ashraf ◽  
David A. Kelly ◽  
Kenneth E. Sawin

ABSTRACTMovement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum-plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells.


2020 ◽  
Author(s):  
Masashi Yukawa ◽  
Yasuhiro Teratani ◽  
Takashi Toda

SUMMARYProper nuclear positioning is essential for the execution of a wide variety of cellular processes in eukaryotic cells (Gundersen and Worman, 2013; Kopf et al., 2020; Lele et al., 2018). In proliferating mitotic cells, nuclear positioning is crucial for successful cell division. The bipolar spindle, which pulls sister chromatids towards two opposite poles, needs to assemble in the geometrical center of the cell. This ensures symmetrical positioning of the two nuclei that are reformed upon mitotic exit, by which two daughter cells inherit the identical set of the chromosomes upon cytokinesis. In fission yeast, the nucleus is positioned in the cell center during interphase; cytoplasmic microtubules interact with both the nucleus and the cell tips, thereby retaining the nucleus in the medial position of the cell (Daga et al., 2006; Tran et al., 2001). By contrast, how the nucleus is positioned during mitosis remains elusive. Here we show that several cell-cycle mutants that arrest in mitosis all displace the nucleus towards one end of the cell axis. Intriguingly, the actin cytoskeleton, not the microtubule counterpart, is responsible for the asymmetric movement of the nucleus. Time-lapse live imaging indicates that mitosis-specific F-actin cables interact with the nuclear membrane, thereby possibly generating an asymmetrical pushing force. In addition, constriction of the actomyosin ring further promotes nuclear displacement. This nuclear movement is beneficial, because if the nuclei were retained in the cell center, subsequent cell division would impose the lethal cut phenotype (Hirano et al., 1986; Yanagida, 1998), in which chromosomes are intersected by the contractile actin ring and the septum. Thus, fission yeast escapes from mitotic catastrophe by means of actin-dependent nuclear movement.


2014 ◽  
Vol 205 (3) ◽  
pp. 357-375 ◽  
Author(s):  
Ning Wang ◽  
Libera Lo Presti ◽  
Yi-Hua Zhu ◽  
Minhee Kang ◽  
Zhengrong Wu ◽  
...  

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.


2014 ◽  
Vol 25 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Joseph E. Clayton ◽  
Luther W. Pollard ◽  
Maria Sckolnick ◽  
Carol S. Bookwalter ◽  
Alex R. Hodges ◽  
...  

A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.


2021 ◽  
pp. mbc.E20-05-0277
Author(s):  
Kristi E. Miller ◽  
Joseph O. Magliozzi ◽  
Noelle A. Picard ◽  
James B. Moseley

Polarized morphogenesis is achieved by targeting or inhibiting growth at distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along non-growing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contain the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like SNARE Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips where it likely promotes exocytosis and growth, but Psy1 is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at non-growing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.


2012 ◽  
Vol 23 (23) ◽  
pp. 4579-4591 ◽  
Author(s):  
Libera Lo Presti ◽  
Fred Chang ◽  
Sophie G. Martin

Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.


2001 ◽  
Vol 12 (5) ◽  
pp. 1367-1380 ◽  
Author(s):  
Fumio Motegi ◽  
Ritsuko Arai ◽  
Issei Mabuchi

We characterized the novel Schizosaccharomyces pombegenes myo4+andmyo5+, both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.


Author(s):  
Kristi E. Miller ◽  
Joseph O. Magliozzi ◽  
Noelle A. Picard ◽  
James B. Moseley

ABSTRACTPolarized morphogenesis is achieved by targeting or inhibiting growth at distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along non-growing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contain the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like SNARE Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips where it promotes exocytosis and growth, but Psy1 is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly lead to aberrant exocytosis at cell sides causing increased cell width, and these defects are exacerbated during osmotic stress. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at non-growing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.


Sign in / Sign up

Export Citation Format

Share Document