An unusual cell surface modification: a double plasma membrane

1979 ◽  
Vol 39 (1) ◽  
pp. 355-372
Author(s):  
N.J. Lane ◽  
J.B. Harrison

The occurrence of an unusual double plasma membrane structure is reported; it has been studied in conventional thin sections, after lanthanum-impregnation and with freeze-fracturing. This modification of the plasmalemma is found where the luminal cell membrane (I membrane) of gut microvilli in the haematophagous insect, Rhodnius prolixus, is surrounded by a second, outer membrane (O membrane), the 2 separated from one another by a highly regular I-O space of about 10 nm. Lanthanum impregnation reveals the presence of columns inclined at an angle, within this I-O space; as in the continuous junctions which link the lateral borders of these cells, these columns may maintain the very precise I-O distance. From the outer microvillar membranes radiate short spoke-like fibrils or sheets which encounter another more extensive system of myelin-like sheets. Freeze-fracturing reveals that the spoke-like sheets and the other ones which lie like a tube, around and parallel to the microvilli, contain linear ridges composed of particles, lying at random within layers of the myelin-like material which also extends into the lumen of the gut. The microvillar membanes, both O and I, fracture into faces containing rows of either PF particles or EF pits arranged as spiral ridges or grooves around the sides and across the tip of each microbillus. These could be the insertion sites of one or both of the I-O columns and spoke-like sheets while the sheets could represent a variant of peritrophic membrane. The double membrane may be a cellular device to increase the strength of the microvillar layer in these blood-sucking animals, since the cell layer must withstand great pressure owing to a sudden massive extension of the gut during a blood meal.

Author(s):  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic disease was first discovered in southern Alberta, Canada, in 1956. A hitherto unidentified disease-causing agent, transmitted by the eriophyid mite, caused chlorosis, stunting and finally severe necrosis resulting in the death of the affected plants. Double membrane-bound bodies (DMBB), 0.1-0.2 μm in diameter were found to be associated with the disease.Young tissues of leaf and root from 4-wk-old infected wheat plants were fixed, dehydrated, and embedded in Spurr’s resin. Serial sections were collected on slot copper grids and stained. The thin sections were then examined with a Hitachi H-7000 TEM at 75 kV. The membrane structure of the DMBBs was studied by numbering them individually and tracing along the sections to see any physical connection with endoplasmic reticulum (ER) membranes. For high resolution scanning EM, a modification of Tanaka’s method was used. The specimens were examined with a Hitachi Model S-570 SEM in its high resolution mode at 20 kV.


Author(s):  
S. Bullivant

The tight junction, or zonula occludens, is generally found as a continuous belt, joining adjacent cells in the apical region of the border between them. It forms a seal across the intercellular space and hence regulates paracellular permeability. Farquhar and Palade (1963), recognised the belt-like sealing character, and showed that in thin sections the junction was seen as either punctate or linear fusions of the two membranes, often with the loss of the outer leaflet of the unit membrane at the fusion. With thin sections it can only be inferred that the junction forms a continuous belt, but with freeze-fracturing it can be seen directly. Moreover, in the junctional region the membrane structure is modified by a series of interconnected fibrils approximately parallel to the line of the belt (Kreutziger, 1968; Staehelin et al, 1969; Goodenough and Revel, 1970), and within the interior of the membrane Tchalcroft and Bullivant, 1970). The fibrils are at the lines of membrane fusion.


2005 ◽  
Vol 393 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Edward Leithe ◽  
Andreas Brech ◽  
Edgar Rivedal

Gap junctions are plasma membrane areas enriched in channels that provide direct intercellular communication. Gap junctions have a high turnover rate; however, the mechanisms by which gap junctions are degraded are incompletely understood. In the present study, we show that in response to phorbol ester treatment, the gap junction channel protein Cx43 (connexin43) is redistributed from the plasma membrane to intracellular vesicles positive for markers for early and late endosomes and for the endolysosomal protease cathepsin D. Immunoelectron microscopy studies indicate that the double membranes of internalized gap junctions undergo separation and cutting, resulting in multivesicular endosomes enriched in Cx43 protein. Using preloading of BSA–gold conjugates to mark lysosomes, we provide evidence suggesting that the degradation process of the double-membrane structure of annular gap junctions occurs prior to transport of Cx43 to the lysosome. The results further suggest that bafilomycin A1, an inhibitor of vacuolar H+-ATPases, causes accumulation of Cx43 in early endosomes. Taken together, these findings indicate that internalized gap junctions undergo a maturation process from tightly sealed double-membrane vacuoles to connexin-enriched multivesicular endosomes with a single limiting membrane. The results further suggest that along with the processing of the double-membrane structure of annular gap junctions, connexins are trafficked via early and late endosomes, finally resulting in their endolysosomal degradation.


Author(s):  
Maria Anna Pabst

In addition to the compound eyes, honeybees have three dorsal ocelli on the vertex of the head. Each ocellus has about 800 elongated photoreceptor cells. They are paired and the distal segment of each pair bears densely packed microvilli forming together a platelike fused rhabdom. Beneath a common cuticular lens a single layer of corneagenous cells is present.Ultrastructural studies were made of the retina of praepupae, different pupal stages and adult worker bees by thin sections and freeze-etch preparations. In praepupae the ocellar anlage consists of a conical group of epidermal cells that differentiate to photoreceptor cells, glial cells and corneagenous cells. Some photoreceptor cells are already paired and show disarrayed microvilli with circularly ordered filaments inside. In ocelli of 2-day-old pupae, when a retinogenous and a lentinogenous cell layer can be clearly distinguished, cell membranes of the distal part of two photoreceptor cells begin to interdigitate with each other and so start to form the definitive microvilli. At the beginning the microvilli often occupy the whole width of the developing rhabdom (Fig. 1).


Author(s):  
N. Seki ◽  
Y. Toyama ◽  
T. Nagano

It is believed that i ntramembra.nous sterols play an essential role in membrane stability and permeability. To investigate the distribution changes of sterols in sperm membrane during epididymal maturation and capacitation, filipin has been used as a cytochemical probe for the detection for membrane sterols. Using this technique in combination with freeze fracturing, we examined the boar spermatozoa under various physiological conditions.The spermatozoa were collected from: 1) caput, corpus and cauda epididymides, 2) sperm rich fraction of ejaculates, and 3)the uterus 2hr after natural coition. They were fixed with 2.5% glutaraldehyde in 0.05M cacodylate buffer (pH 7.4), and treated with the filipin solution (final concentration : 0.02.0.05%) for 24hr at 4°C with constant agitation. After the filipin treatment, replicas were made by conventional freeze-fracture technique. The density of filipin-sterol complexes (FSCs) was determined in the E face of the plasma membrane of head regions.


1998 ◽  
Vol 30 (4-5) ◽  
pp. 328-329 ◽  
Author(s):  
V. K. Rybal'chenko

1964 ◽  
Vol 20 (2) ◽  
pp. 217-233 ◽  
Author(s):  
G. W. Claus ◽  
L. E. Roth

The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.


Micron (1969) ◽  
1980 ◽  
Vol 11 (3-4) ◽  
pp. 359-364 ◽  
Author(s):  
S. Bullivant

Science ◽  
1977 ◽  
Vol 196 (4293) ◽  
pp. 1005-1007 ◽  
Author(s):  
D. Schotland ◽  
E Bonilla ◽  
M Van Meter

1984 ◽  
Vol 98 (2) ◽  
pp. 748-760 ◽  
Author(s):  
P E Stenberg ◽  
M A Shuman ◽  
S P Levine ◽  
D F Bainton

The redistribution of beta-thromboglobulin (beta TG), platelet Factor 4 (PF4), and fibrinogen from the alpha granules of the platelet after stimulation with thrombin was studied by morphologic and immunocytochemical techniques. The use of tannic acid stain and quick-freeze techniques revealed several thrombin-induced morphologic changes. First, the normally discoid platelet became rounder in form, with filopodia, and the granules clustered in its center. The granules then fused with one another and with elements of the surface-connected canalicular system (SCCS) to form large vacuoles in the center of the cell and near the periphery. Neither these vacuoles nor the alpha granules appeared to fuse with the plasma membrane, but the vacuoles were connected to the extracellular space by wide necks, presumably formed by enlargement of the narrow necks connecting the SCCS to the surface of the unstimulated cell. The presence of fibrinogen, beta TG, and PF4 in corresponding large intracellular vacuoles and along the platelet plasma membrane after thrombin stimulation was demonstrated by immunocytochemical techniques in saponin-permeabilized and nonpermeabilized platelets. Immunocytochemical labeling of the three proteins on frozen thin sections of thrombin-stimulated platelets confirmed these findings and showed that all three proteins reached the plasma membrane by the same pathway. We conclude that thrombin stimulation of platelets causes at least some of the fibrinogen, beta TG, and PF4 stored in their alpha granules to be redistributed to their plasma membranes by way of surface-connected vacuoles formed by fusion of the alpha granules with elements of the SCCS.


Sign in / Sign up

Export Citation Format

Share Document